Publications by authors named "Sarka Ryglova"

The aim of our study was to describe the impact of collagen in the gel and dry state to various doses of electron beam radiation (1, 10 and 25 kGy) which are using for food processing and sterilization. The changes in the chemical compositions (water, amino acids, lipids, glycosaminoglycans) were analyzed and the changes in the structure (triple-helix or β-sheet, the integrity of the collagen) were assessed. Subsequently, the impact of the applied doses on the mechanical properties, stability in the enzymatic environment, swelling and morphology were determined.

View Article and Find Full Text PDF

The aim of this study was to investigate batch-to-batch inconsistencies in the processing of pig and fish collagen isolates processed using two protocols that differed in terms of the acetic acid concentrations applied and the pre- and post-extraction steps, and which were previously tested in our laboratory with the intention of preserving the biological structures and functions of the collagen isolates for biomedical purposes. Both the major and minor components such as the amino acids, lipids, water, glycosaminoglycan and ash contents and elemental content, as well as the structure and morphology of the raw sources and the resulting batches of isolates were subsequently examined in detail applying standardized analytical methods including high perfomance liquid chromatography, ultraviolet-visible and infrared spectrometry, polyacrylamide gel electrophoresis, energy dispersive spectroscopy and scanning electron microscopy. All the fish isolates provided severalfold higher yields (8-45 wt%) than did the pig isolates (3-9 wt%).

View Article and Find Full Text PDF

Scaffolds made of degradable polymers, such as collagen, polyesters or polysaccharides, are promising matrices for fabrication of bioartificial vascular grafts or patches. In this study, collagen isolated from porcine skin was processed into a gel, reinforced with collagen particles and with incorporated adipose tissue-derived stem cells (ASCs). The cell-material constructs were then incubated in a DMEM medium with 2% of FS (DMEM_part), with added polyvinylalcohol nanofibers (PVA_part sample), and for ASCs differentiation towards smooth muscle cells (SMCs), the medium was supplemented either with human platelet lysate released from PVA nanofibers (PVA_PL_part) or with TGF-β1 + BMP-4 (TGF + BMP_part).

View Article and Find Full Text PDF

This paper suggests a sensitive reversed-phase gradient HPLC method combined with fluorescence detection that has been developed, optimized and tested via the quantitative analysis of authentic biological material in an effort to determine and subsequently compare the total content of glycosaminoglycans (GAGs) in various collagen-based biomaterials intended for medical application. The proposed analytical method enabled the identification and separation of the GAGs present from the other components in the samples using commonly-available laboratory equipment; moreover, the very low detection limit of the method permits the determination of GAGs even for very small samples. This study describes the development of the method, including the isolation and processing of the collagen samples prior to HPLC analysis and the optimal parameters applied during the chromatographic analysis.

View Article and Find Full Text PDF

The aim of this study was to develop an osteo-inductive resorbable layer allowing the controlled elution of antibiotics to be used as a bone/implant bioactive interface particularly in the case of prosthetic joint infections, or as a preventative procedure with respect to primary joint replacement at a potentially infected site. An evaluation was performed of the vancomycin release kinetics, antimicrobial efficiency and cytocompatibility of collagen/hydroxyapatite layers containing vancomycin prepared employing different hydroxyapatite concentrations. Collagen layers with various levels of porosity and structure were prepared using three different methods: by means of the lyophilisation and electrospinning of dispersions with 0, 5 and 15wt% of hydroxyapatite and 10wt% of vancomycin, and by means of the electrospinning of dispersions with 0, 5 and 15wt% of hydroxyapatite followed by impregnation with 10wt% of vancomycin.

View Article and Find Full Text PDF

Infections of the musculoskeletal system present a serious problem with regard to the field of orthopedic and trauma medicine. The aim of the experiment described in this study was to develop a resorbable nanostructured composite layer with the controlled elution of antibiotics. The layer is composed of collagen, hydroxyapatite nanoparticles, and vancomycin hydrochloride (10 wt%).

View Article and Find Full Text PDF

Nanocomposite scaffolds which aimed to imitate a bone extracellular matrix were prepared for bone surgery applications. The scaffolds consisted of polylactide electrospun nano/sub-micron fibres, a natural collagen matrix supplemented with sodium hyaluronate and natural calcium phosphate nano-particles (bioapatite). The mechanical properties of the scaffolds were improved by means of three different cross-linking agents: N-(3-dimethylamino propyl)-N'-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide in an ethanol solution (EDC/NHS/EtOH), EDC/NHS in a phosphate buffer saline solution (EDC/NHS/PBS) and genipin.

View Article and Find Full Text PDF