Alzheimer's disease (AD) patients present with symptoms such as impairment of insulin signaling, chronic inflammation, and oxidative stress. Furthermore, there are comorbidities associated with AD progression. For example, osteoporosis is common with AD wherein patients exhibit reduced mineralization and a risk for fragility fractures.
View Article and Find Full Text PDFFront Mol Neurosci
July 2022
Tunneling nanotubes (TNTs), intercellular connections enriched with F-actin, were first identified as a viable means of cellular communication and organelle transport in animal cells at the early part of this century. Within the last 10 years, these microscopic and highly dynamic protrusions have been implicated in neurodegenerative disease propagation and pathogenesis. A host of aggregation-prone protein inclusions, including those containing alpha-synuclein, tau, prions and others, hijack this communication mechanism in both neurons and astrocytes.
View Article and Find Full Text PDFIntercellular propagation of aggregated protein inclusions along actin-based tunneling nanotubes (TNTs) has been reported as a means of pathogenic spread in Alzheimer's, Parkinson's, and Huntington's diseases. Propagation of oligomeric-structured polyglutamine-expanded ataxin-1 (Atxn1[154Q]) has been reported in the cerebellum of a Spinocerebellar ataxia type 1 (SCA1) knock-in mouse to correlate with disease propagation. In this study, we investigated whether a physiologically relevant polyglutamine-expanded ATXN1 protein (ATXN1[82Q]) could propagate intercellularly.
View Article and Find Full Text PDFGrowing evidence from neurodegenerative disease research supports an early pathogenic role for mitochondrial dysfunction in affected neurons that precedes morphological and functional deficits. The resulting oxidative stress and respiratory malfunction contribute to neuronal toxicity and may enhance the vulnerability of neurons to continued assault by aggregation-prone proteins. Consequently, targeting mitochondria with antioxidant therapy may be a non-invasive, inexpensive, and viable means of strengthening neuronal health and slowing disease progression, thereby extending quality of life.
View Article and Find Full Text PDFObesity, insulin resistance, and poor metabolic profile are hallmarks of a high-fat diet (HFD), highlighting the need to understand underlying mechanisms. Therefore, we sought to determine the effect of succinic acid (SA) on metabolism in high-fat diet (HFD)-induced obesity. Animals were randomly assigned to either low-fat diet (LFD) or a high-fat diet (HFD).
View Article and Find Full Text PDFCircadian disruption resulting from exposure to irregular light-dark patterns and sleep deprivation has been associated with beta amyloid peptide (Aβ) aggregation, which is a major event in Alzheimer's disease (AD) pathology. We exposed 5XFAD mice and littermate controls to dim-light vs. bright-light photophases to investigate the effects of altering photophase strength on AD-associated differences in cortical Aβ42 levels, wheel-running activity, and circadian free-running period (tauDD).
View Article and Find Full Text PDFSpinocerebellar ataxia type 1 (SCA1) is a polyglutamine (polyQ) repeat neurodegenerative disease in which a primary site of pathogenesis are cerebellar Purkinje cells. In addition to polyQ expansion of ataxin-1 protein (ATXN1), phosphorylation of ATXN1 at the serine 776 residue (ATXN1-pS776) plays a significant role in protein toxicity. Utilizing a biochemical approach, pharmacological agents and cell-based assays, including SCA1 patient iPSC-derived neurons, we examine the role of Protein Kinase A (PKA) as an effector of ATXN1-S776 phosphorylation.
View Article and Find Full Text PDFMitochondrial dysfunction plays a significant role in neurodegenerative disease including ataxias and other movement disorders, particularly those marked by progressive degeneration in the cerebellum. In this study, we investigate the role of mitochondrial oxidative phosphorylation (OXPHOS) deficits in cerebellar tissue of a Purkinje cell-driven spinocerebellar ataxia type 1 (SCA1) mouse. Using RNA sequencing transcriptomics, OXPHOS complex assembly analysis and oxygen consumption assays, we report that in the presence of mutant polyglutamine-expanded ataxin-1, SCA1 mice display deficits in cerebellar OXPHOS complex I (NADH-coenzyme Q oxidoreductase).
View Article and Find Full Text PDFMitochondrial dysfunction plays a significant role in the aging process and in neurodegenerative diseases including several hereditary spinocerebellar ataxias and other movement disorders marked by progressive degeneration of the cerebellum. The goal of this protocol is to assess mitochondrial dysfunction in Spinocerebellar ataxia type 1 (SCA1) and assess the efficacy of pharmacological targeting of metabolic respiration via the water-soluble compound succinic acid to slow disease progression. This approach is applicable to other cerebellar diseases and can be adapted to a host of water-soluble therapies.
View Article and Find Full Text PDFSpinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder that primarily affects the cerebellum and brainstem. The genetic mutation is an expansion of CAG trinucleotide repeats within the coding region of the ataxin-1 gene, characterizing SCA1 as a polyglutamine expansion disease like Huntington's. As with most polyglutamine expansion diseases, SCA1 follows the rules of genetic anticipation: the larger the expansion, the earlier and more rapid the symptoms.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive neurodegenerative disease marked by deficits in episodic memory, working memory (WM), and executive function. Examples of executive dysfunction in AD include poor selective and divided attention, failed inhibition of interfering stimuli, and poor manipulation skills. Although episodic deficits during disease progression have been widely studied and are the benchmark of a probable AD diagnosis, more recent research has investigated WM and executive function decline during mild cognitive impairment (MCI), also referred to as the preclinical stage of AD.
View Article and Find Full Text PDFAggregation-prone proteins in neurodegenerative disease disrupt cellular protein stabilization and degradation pathways. The neurodegenerative disease spinocerebellar ataxia type 1 (SCA1) is caused by a coding polyglutamine expansion in the Ataxin-1 gene (ATXN1), which gives rise to the aggregation-prone mutant form of ATXN1 protein. Cerebellar Purkinje neurons, preferentially vulnerable in SCA1, produce ATXN1 protein in both cytoplasmic and nuclear compartments.
View Article and Find Full Text PDFAtaxin-1 protein expression is found in the cytoplasm and nucleus of Purkinje cells, the primary site of spinocerebellar ataxia type 1 (SCA1). Phosphorylation at S776 occurs in the cytoplasm and stabilizes the protein through interaction with 14-3-3, allowing it to translocate into the nucleus where disease is initiated. Phosphorylation and stabilization are enhanced when the polyglutamine expansion is present.
View Article and Find Full Text PDFMany neurodegenerative disorders, such as Alzheimer's, Parkinson's and polyglutamine diseases, share a common pathogenic mechanism: the abnormal accumulation of disease-causing proteins, due to either the mutant protein's resistance to degradation or overexpression of the wild-type protein. We have developed a strategy to identify therapeutic entry points for such neurodegenerative disorders by screening for genetic networks that influence the levels of disease-driving proteins. We applied this approach, which integrates parallel cell-based and Drosophila genetic screens, to spinocerebellar ataxia type 1 (SCA1), a disease caused by expansion of a polyglutamine tract in ataxin 1 (ATXN1).
View Article and Find Full Text PDFThe age-related pathological cascade underlying intraneuronal tau formation in 3xTg-AD mice, which harbor the human APP(Swe), PS1(M126V) , and Tau(P301L) gene mutations, remains unclear. At 3 weeks of age, AT180, Alz50, MC1, AT8, and PHF-1 intraneuronal immunoreactivity appeared in the amygdala and hippocampus and at later ages in the cortex of 3xTg-AD mice. AT8 and PHF-1 staining was fixation dependent in young mutant mice.
View Article and Find Full Text PDFNeurofibrillary tangles (NFTs), comprising human intracellular microtubule-associated protein tau, are one of the hallmarks of tauopathies, including Alzheimer's disease. Recently, a report that caspase-cleaved tau is present in NFTs has led to the hypothesis that the mechanisms underlying NFT formation may involve the apoptosis cascade. Here, we show that adenoviral infection of tau into COS-7 cells induces activation of c-jun N-terminal kinase (JNK), followed by excessive phosphorylation of tau and its cleavage by caspase.
View Article and Find Full Text PDFProtein misfolding is a distinguishing feature of a number of neurodegenerative diseases. Accumulation of misfolded protein often results in cellular lesions, the location of lesions correlating with the nature of symptoms. Alzheimer's disease (AD), Progressive Supranuclear Palsy (PSP), Corticobasal Degeneration (CBD) and Pick's Disease (PiD) all present with pathological lesions containing hyperphosphorylated filamentous tau protein; however, the location and type of lesion varies.
View Article and Find Full Text PDFThe mitogen-activated protein (MAP) kinase SAPK/JNK phosphorylates tau protein at many of its proline-directed serine/threonine residues in vitro and is a likely candidate kinase to phosphorylate the pathologically relevant S422 site on tau. Since phosphorylation of tau, particularly at S422, is a relatively early marker of AD and seems to precede tangle formation, it appears likely that an early form of activated SAPK/JNK might be detected by immunohistochemical means around the time that tau begins to aggregate into tangles. We report here that an antibody to phospho-SAPK/JNK (p-SAPK/JNK) reacts with several types of lesions including granular bodies in limbic areas; NFTs in limbic cortex and temporal neocortex; occasional neuritic plaques in temporal neocortex; and select axons in the hippocampus, entorhinal cortex, and inferior temporal cortex.
View Article and Find Full Text PDFArachidonic acid (AA), released in response to muscarinic acetylcholine receptor (mAChR) stimulation, previously has been reported to function as a reversible feedback inhibitor of the mAChR. To determine if the effects of AA on binding to the mAChR are subtype specific and whether AA inhibits ligand binding to other G protein-coupled receptors (GPCRs), the effects of AA on ligand binding to the mAChR subtypes (M1, M2, M3, M4, and M5) and to the micro-opioid receptor, beta2-adrenergic receptor (beta2-AR), 5-hydroxytryptamine receptor (5-HTR), and nicotinic receptors were examined. AA was found to inhibit ligand binding to all mAChR subtypes, to the beta2-AR, the 5-HTR, and to the micro-opioid receptor.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2003
The principal pathological features of Alzheimer's disease (AD) are extracellular amyloid plaques and intracellular neurofibrillary tangles, the latter composed of the microtubule-binding protein tau assembled into paired helical and straight filaments. Recent studies suggest that these pathological entities may be functionally linked, although the mechanisms by which amyloid deposition promotes pathological tau filament assembly are poorly understood. Here, we report that tau is proteolyzed by multiple caspases at a highly conserved aspartate residue (Asp421) in its C terminus in vitro and in neurons treated with amyloid-beta (Abeta) (1-42) peptide.
View Article and Find Full Text PDF