In the face of the SARS-CoV-2 pandemic, characterized by the virus's rapid mutation rates, developing timely and targeted therapeutic and diagnostic interventions presents a significant challenge. This study utilizes bioinformatic analyses to pinpoint conserved genomic regions within SARS-CoV-2, offering a strategic advantage in the fight against this and future pathogens. Our approach has enabled the creation of a diagnostic assay that is not only rapid, reliable, and cost-effective but also possesses a remarkable capacity to detect a wide array of current and prospective variants with unmatched precision.
View Article and Find Full Text PDFIntervertebral disc (IVD) degeneration and accompanying lower back pain impose global medical and societal challenges, affecting over 600 million people worldwide. The IVD complex fibrocartilaginous structure is responsible for the spine biomechanical function. The nucleus pulposus (NP), composed of swellable glycosaminoglycan (GAG), transfers compressive loads to the surrounding fiber-reinforced annulus fibrosus (AF) lamellae, which stretches under tension.
View Article and Find Full Text PDFCell microencapsulation in gel beads contributes to many biomedical processes and pharmaceutical applications. Small beads (<300 µm) offer distinct advantages, mainly due to improved mass transfer and mechanical strength. Here, we describe, for the first time, the encapsulation of human-bone-marrow-derived mesenchymal stem cells (hBM-MSCs) in small-sized microspheres, using one-step emulsification by internal gelation.
View Article and Find Full Text PDFCancer stem cells, also termed tumor initiating cells (TICs), are a rare population of cells within the tumor mass which initiate tumor growth and metastasis. In pancreatic cancer, TICs significantly contribute to tumor re-growth after therapy, due to their intrinsic resistance. Here we demonstrate that copper oxide nanoparticles (CuO-NPs) are cytotoxic against TIC-enriched PANC1 human pancreatic cancer cell cultures.
View Article and Find Full Text PDFThe emergence of antimicrobial resistance poses a major challenge to healthcare. Probiotics offer a potential alternative treatment method but are often incompatible with antibiotics themselves, diminishing their overall therapeutic utility. This work uses biofilm-inspired encapsulation of probiotics to confer temporary antibiotic protection and to enable the coadministration of probiotics and antibiotics.
View Article and Find Full Text PDFCopper oxide nanoparticles (CuO-NPs) are increasingly becoming the subject of investigation exploring their potential use for diagnostic and therapeutic purposes. Recent work has demonstrated their anticancer potential, as well as contrast agent capabilities for magnetic resonance imaging (MRI) and through-transmission ultrasound. However, no capability of CuO-NPs has been demonstrated using conventional ultrasound systems, which, unlike the former, are widely deployed in the clinic.
View Article and Find Full Text PDFBackground: This study aimed to investigate the prolyl and lysine hydroxylation in elastin from different species and tissues.
Methods: Enzymatic digests of elastin samples from human, cattle, pig and chicken were analyzed using mass spectrometry and bioinformatics tools.
Results: It was confirmed at the protein level that elastin does not contain hydroxylated lysine residues regardless of the species.
Biochim Biophys Acta
October 2014
Background: Aggrecan is the major non-collagenous component of the intervertebral disc. It is a large proteoglycan possessing numerous glycosaminoglycan chains and the ability to form aggregates in association with hyaluronan. Its abundance and unique molecular features provide the disc with its osmotic properties and ability to withstand compressive loads.
View Article and Find Full Text PDFPurpose: One possible source of chronic low back pain is a degenerated intervertebral disc. In this review, various diagnostic methods for the assessment of the presence of degenerative changes are described. These include clinical MRI, a number of novel MRI techniques and nuclear magnetic resonance spectroscopy.
View Article and Find Full Text PDFBackground: The intervertebral disc (IVD) is a complex cartilaginous structure which functions to resist biomechanical loads during spinal movement. It consists of the highly viscous cartilaginous nucleus pulposus, which is surrounded laterally by a thick outer ring of fibrous cartilage-the annulus fibrosus-and sandwiched inferiorly and superiorly by the cartilage end-plates. The main extracellular matrix molecules of the disc are collagens, proteoglycans, glycoproteins and elastin.
View Article and Find Full Text PDFPurpose: Aggrecan is one of the major macromolecular components of the intervertebral disc (IVD) and its loss is an early sign of degeneration. Restoration of aggrecan, and hence of biomechanical properties, is a major objective of biological therapies. At present, assessment of aggrecan concentration via its glycosaminoglycan (GAG) content is accomplished using biochemical and histological methods which require sacrifice of tissue.
View Article and Find Full Text PDFThe intervertebral disc is an avascular tissue, maintained by a small population of cells that obtain nutrients mainly by diffusion from capillaries at the disc-vertebral body interface. Loss of this nutrient supply is thought to lead to disc degeneration, but how nutrient supply influences viable cell density is unclear. We investigated two factors that influence nutrient delivery to disc cells and hence cell viability: disc height and blood supply.
View Article and Find Full Text PDFPhospholipids (PL) form the matrix of biological membranes and of the lipoprotein envelope monolayer, and are responsible for many of the unique physicochemical, biochemical, and biological properties of these supermolecular bioassemblies. It was suggested that phospholipids present in the synovial fluid (SF) and on the surface of articular cartilage have major involvement in the low friction of cartilage, which is essential for proper mobility of synovial joints. In pathologies, such as impaired biolubrication (leading to common joint disorders such as osteoarthritis), the level of phospholipids in the SF is reduced.
View Article and Find Full Text PDFBMC Musculoskelet Disord
February 2008
Background: Many new treatments for degeneration of the intervertebral disc are being developed which can be delivered through a needle. These require testing in model systems before being used in human patients. Unfortunately, because of differences in anatomy, there are no ideal animal models of disc degeneration.
View Article and Find Full Text PDFBecause extrafibrillar water content dictates extrafibrillar osmolarity, we aimed to determine the influence of intra- and extrafibrillar fluid exchange on intradiscal pressures and stresses. As experimental results showed that extrafibrillar osmolarity affects intervertebral disc cell gene expression and crack propagation, quantification of the effects of changes in intra- and extrafibrillar fluid exchange is physiologically relevant. Therefore, our 3D osmoviscoelastic finite element (FE) model of the intervertebral disc was extended to include the intra- and extrafibrillar water differentiation.
View Article and Find Full Text PDFThe present study utilizes expert neural networks for the prediction of proteins secondary structure. We use three independent networks, one for each structure (alpha, beta and coil) as the first-level processing unit; decision upon the chosen structure for each residue is carried out by a second-level, post-processing unit, which utilizes the Chou and Fasman frequency values Falpha and Fbeta in order to strengthen and/or deplete the probability of the specific structure under investigation. The highest prediction case was 76%.
View Article and Find Full Text PDFDuring aging and degeneration, many changes occur in the structure and composition of human cartilaginous tissues, which include the accumulation of the AGE (advanced glycation end-product), pentosidine, in long-lived proteins. In the present study, we investigated the accumulation of pentosidine in constituents of the human IVD (intervertebral disc), i.e.
View Article and Find Full Text PDFStudy Design: Coculture assays of the migration and interaction of human intervertebral disc cells and chick sensory nerves on alternate substrata of collagen and aggrecan.
Objective: To examine the effects of aggrecan on disc cell migration, how disc cells and sensory nerves interact, and whether disc cells affect previously reported inhibitory effects of aggrecan on sensory nerve growth.
Summary Of Background Data: Human intervertebral disc aggrecan is inhibitory to sensory nerve growth in vitro, suggesting that a loss of aggrecan from the disc may have a role in the increased innervation seen in disc degeneration.
Fluid balance in the intervertebral disc under applied load is determined primarily by its swelling pressure, that is, the external pressure at which it neither loses nor gains water. This depends on the composition of the tissue, in particular on its proteoglycan concentration. Proteoglycans develop a high osmotic pressure due to their fixed negatively charged groups.
View Article and Find Full Text PDFWe have used the racemization of aspartic acid as a marker for the "molecular age" of aggrecan components of the human intervertebral disc matrix (aggregating and non-aggregating proteoglycans as well as the different buoyant density fractions of aggrecan). By measuring the D/L(Asp) ratio of the various aggrecan species as a function of age and using the values of the racemization constant, k(i), found earlier for aggrecan in articular cartilage, we were able to establish directly the relative residence time of these molecules in human intervertebral disc matrix. For A1 preparations taken from normal tissue, turnover rates of 0.
View Article and Find Full Text PDFEnzyme-Based Logic Gates (ENLOGs) are key components in bio-molecular systems for information processing. This report and the previous one in this series address the characterization of two bio-molecular switching elements, namely the alpha-chymotrypsin (alphaCT) derivative p-phenylazobenzoyl-alpha-chymotrypsin (PABalphaCT) and its inhibitor (proflavine), as well as their assembly into a logic gate. The experimental output of the proposed system is expressed in terms of enzymic activity and this was translated into logic output (i.
View Article and Find Full Text PDFMolecular engineering refers to a collection of complex, computer-based methods used to study molecular structures and properties. These methods include ones for determining properties as well as for accessing prior knowledge about them. Applying these methods, one can generate, manipulate and calculate the energy involved with the three-dimensional conformation of a given molecule.
View Article and Find Full Text PDF