Xanthomonas campestris pv. campestris causes black rot in cruciferous crops. Hydrogen peroxide (H(2)O(2)) production and accumulation is an important initial response in plant defense against invading microbes.
View Article and Find Full Text PDFXanthomonas campestris pv. campestris, a soil-borne plant-pathogenic bacterium, is exposed to multiple stresses in the environment and during interaction with a host plant. The roles of hydrogen peroxide (H(2) O(2) )-protective genes (katA, katG, and ahpC) and a peroxide sensor/transcription regulator (oxyR) in the viability of X.
View Article and Find Full Text PDFCopper (Cu)-based biocides are important chemical controls for both fungal and bacterial diseases in crop fields. Here, we showed that Cu ions at a concentration of 100 μM enhanced t-butyl hydroperoxide (tBOOH) and hydrogen peroxide (H(2) O(2) ) killing of Xanthomonas campestris pv. campestris through different mechanisms.
View Article and Find Full Text PDFXanthomonas campestris pv. campestris katG encodes a catalase-peroxidase that has a role in protecting the bacterium against micromolar concentrations of H(2)O(2). A knockout mutation in katG that causes loss of catalase-peroxidase activity correlates with increased susceptibility to H(2)O(2) and a superoxide generator and is avirulent in a plant model system.
View Article and Find Full Text PDFTransposon mini-Tn7 vectors insert into the chromosome of several Gram-negative bacteria in a site-specific manner. Here, we showed the application of mini-Tn7 as single copy site-specific integration vector system for Xanthomonas campestris pv. campestris.
View Article and Find Full Text PDF