Publications by authors named "Sarinthip Thanakkasaranee"

In this study, epoxidized natural rubber (ENR) was mixed using a two-roller mixer. Water hyacinth fiber (WHF) acted as a reinforcing agent in the preparation of the rubber composite at 10 phr (ENRC/WHF). Chlorhexidine gluconate (CHG) was added at different concentrations (1, 5, 10, and 20 phr) as an antimicrobial and coupling agent.

View Article and Find Full Text PDF

The utilization of biopolymers incorporated with antimicrobial agents is extremely interesting in the development of environmentally friendly functional materials for food packaging and other applications. In this study, the effect of calcium oxide (CaO) on the morphological, mechanical, thermal, and hydrophilic properties as well as the antimicrobial activity of carboxymethyl chitosan (CMCH) bio-composite films was investigated. The CMCH was synthesized from shrimp chitosan through carboxymethylation, whereas the CaO was synthesized via a co-precipitation method with polyethylene glycol as a stabilizer.

View Article and Find Full Text PDF

The present study aimed to extract nanocellulose (NC) from sugarcane bagasse agricultural waste through a chemical method (sulfuric acid hydrolysis and ultrasonication). Subsequently, the nanocellulose product was conjugated with polylysine (NC-PL) and assessed for its efficacy in reducing the toxicity of Fumonisin B1 (FB1), a mycotoxin produced by fungi commonly found in corn, wheat, and other grains. Experimental results confirmed the successful conjugation of NC and PL, as evidenced by FTIR peaks at 1635 and 1625 cm indicating amide I and amide II vibrations in polylysine (PL).

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on using hydrogel materials for targeted drug delivery to enhance anti-inflammatory wound healing.
  • Hydrogel films were created using carboxymethyl cellulose and poly(vinyl alcohol) with varying concentrations of crosslinkers (citric acid and glutaraldehyde) to optimize their properties.
  • The optimized hydrogels featured improved structural characteristics that allowed for controlled drug release, leading to increased absorption and effectiveness of the anti-inflammatory drug triamcinolone acetonide.
View Article and Find Full Text PDF

A novel poly (lactic acid) (PLA) composite with excellent mechanical properties, toughness, thermal stability, and water resistance was developed using a reactive melt-blending technique. PLA was melt mixed with epoxy resin (EPOXY) and bamboo pulp (PULP) to improve its reaction and mechanical properties. FTIR analysis confirmed the successful reaction of the PLA/EPOXY/PULP composites; the epoxy groups of EPOXY reacted with the -COOH groups of PLA and the -OH groups of PULP.

View Article and Find Full Text PDF

Novel biodegradable thermoplastic starch (TPS) with high mechanical properties and water resistance was developed using reactive blending technique. Effect of zinc oxide (ZnO) addition to TPS properties and reaction was investigated. Thermoplastic modified starch (TPMS) was prepared by melt-mixing modified starch with glycerol 70/30%wt/wt.

View Article and Find Full Text PDF

Biodegradable starch-based polymers were developed by melt-blending modified thermoplastic starch (MTPS) with poly(butylene succinate) (PBS) blended with epoxy resin (Er). A modified thermoplastic starch blend with chlorhexidine gluconate (MTPSCh) was prepared by melt-blending cassava starch with glycerol and chlorhexidine gluconate (CHG) 1.0% wt.

View Article and Find Full Text PDF

Using vegetable oils as a plasticizer or processing aid in green rubber products is becoming popular due to environmental concerns. However, differences in vegetable oil processing result in varying amounts of low-molecular-weight (low-MW) free fatty acids (FFAs) in their composition, which range from 2% to 30%. This research investigated how the properties of silica-filled styrene butadiene rubber (SBR) and butadiene rubber (BR) blends were affected by the presence of FFAs in palm oil (PO).

View Article and Find Full Text PDF

Cellulose from different species of bamboo ( Gamble, Munro (DSM), , and sp.) was converted to cellulose nanocrystals (CNCs) by a chemical-mechanical method. First, bamboo fibers were pre-treated (removal of lignin and hemicellulose) to obtain cellulose.

View Article and Find Full Text PDF

Microbial volatile organic compounds (MVOCs) are a diverse group of volatile organic compounds that microorganisms may produce and release into the environment. These compounds have both positive and negative effects on plants, as they have been shown to be effective at mitigating stresses and functioning as immune stimulants. Furthermore, MVOCs modulate plant growth and systemic plant resistance, while also serving as attractants or repellents for insects and other stressors that pose threats to plants.

View Article and Find Full Text PDF

An epoxidized natural rubber (ENR) blend with chlorhexidine gluconate (CHG) was prepared using a two-roll mill at 130 °C. CHG was added at concentrations of 0.2, 0.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers created an antimicrobial thermoplastic starch (TPS) by mixing it with chlorhexidine gluconate (CHG) and epoxy resin (Er), which improved its strength and hardness significantly, especially at 5 wt% of Er.
  • The addition of epoxy resin also enhanced water resistance and confirmed chemical reactions through advanced analyses, indicating a successful blending of materials.
  • While some blends showed effectiveness against both Staphylococcus aureus and Bacillus cereus, the highest concentrations of epoxy resin primarily inhibited only Staphylococcus aureus, with several blends also effective against yeast.
View Article and Find Full Text PDF

The nano-metal-treated PET films with anti-virus and anti-fogging ability were developed using sparking nano-metal particles of Ag, Zn, and Ti wires on polyethylene terephthalate (PET) films. Ag nanoparticles were detected on the PET surface, while a continuous aggregate morphology was observed with Zn and Ti sparking. The color of the Ag-PET films changed to brown with increasing repeat sparking times, but not with the Zn-PET and Ti-PET films.

View Article and Find Full Text PDF

Poly(lactic acid) was melt-blended with epoxy resin without hardener and chitosan (CTS) to prepare modified PLA (PLAEC). Epoxy resin 5% and CTS 1-20% (wt/wt) were incorporated into PLA during melt mixing. PLAEC was melt-blended with an epoxidized natural rubber (ENR) 80/20 wt.

View Article and Find Full Text PDF

Packaging materials for microwave application should be generally designed based on products properties and processing conditions such as microwavability, susceptibility, processing condition, barrier properties, mechanical properties, storage condition, sustainability, convenience, and so on. Ready-to-eat products are packed in materials that can sustain thermal processing in an industrial oven and warming process in a household oven. In this context, high barrier polymers are versatile microwave packaging materials due to the microwave transparency (unlike metalized film) and high barrier.

View Article and Find Full Text PDF

Carboxymethyl rice starch films were prepared from carboxymethyl rice starch (CMSr) treated with sodium hydroxide (NaOH) at 10-50% /. The objective of this research was to determine the effect of NaOH concentrations on morphology, mechanical properties, and water barrier properties of the CMSr films. The degree of substitution (DS) and morphology of native rice starch and CMSr powders were examined.

View Article and Find Full Text PDF

This study investigated the effect of chitosan particle sizes on the properties of carboxymethyl chitosan (CMCh) powders and films. Chitosan powders with different particle sizes (75, 125, 250, 450 and 850 µm) were used to synthesize the CMCh powders. The yield, degree of substitution (DS), and water solubility of the CMCh powders were then determined.

View Article and Find Full Text PDF

A mixture of corn starch and glycerol plasticizer (CSG) was blended with latex natural rubber (LNR) and carboxymethyl cellulose (CMC). The addition of 10 phr of CMC improved the Young's modulus (6.7 MPa), tensile strength (8 MPa), and elongation at break (80%) of the CSG/LNR blend.

View Article and Find Full Text PDF

To improve the dimensional thermal stability of polyethylene terephthalate (PET), a poly(ethylene glycol 1,4-cyclohexane dimethylene (CHDM) isosorbide (ISB) terephthalate) (PEICT) known as ECOZENT110 (EZT) was introduced into PET using a melt blending technique. The miscibility, morphology, and thermal properties of the PET/EZT samples were investigated. The introduction of amorphous EZT into semi-crystalline PET increased the glass transition temperature (T) but decreased the crystallinity, which could be related to the transesterification reaction.

View Article and Find Full Text PDF

Solvothermal synthesis was used to investigate the formation of zinc oxide (ZnO) nanoparticles (NPs). A series of ZnO NPs was synthesized with different relative ratios of didodecyldimethylammonium bromide (DDAB) and zinc nitrate (ZN). The variation in the molarity influenced the crystallinity, size, and morphology of the obtained ZnO NPs.

View Article and Find Full Text PDF

A series of nylon (NY)/linear low-density polyethylene (LLDPE) containing calcined corals (NY/LL-CORALS) composite films were prepared using the cast extrusion method. We investigated the effect of different contents of incorporated calcined corals on the physical properties and antimicrobial activity of the composite films as well as their feasibility for milk storage applications. The results indicated that the main compound in calcined corals was calcium oxide (CaO).

View Article and Find Full Text PDF

In this study, natural waste of marine corals was calcined to prepare an antimicrobial agent. Energy-dispersive X-ray fluorescence spectroscopy showed that the major element and compound of calcined corals were Ca and CaO, respectively, while X-ray photoelectron spectroscopy revealed the occurrence of more than one oxygen species (O) on the surface of calcined corals, which was ascribed to the presence of MgO. Scanning electron microscopy imaging showed that calcined corals had a rough surface and an irregular shape, and the particle size distribution indicated that the average particle size of the calcined corals was 7.

View Article and Find Full Text PDF

A series of PLA/ZnO bionanocomposite films were prepared by introducing positively surface charged zinc oxide nanoparticles (ZnO NPs) into biodegradable poly(lactic acid) (PLA) by the solvent casting method, and their physical properties and antibacterial activities were evaluated. The physical properties and antibacterial efficiencies of the bionanocomposite films were strongly dependent on the ZnO NPs content. The bionanocomposite films with over 3% ZnO NPs exhibited a rough surface, poor dispersion, hard agglomerates, and voids, leading to a reduction in the crystallinity and morphological defects.

View Article and Find Full Text PDF

A series of poly(ether-block-amide) (PEBAX)/polyethylene glycol (PEG) composite films (PBXPG) were prepared by solution casting technique. This study demonstrates how the incorporation of different molecular weight PEG into PEBAX can improve the as-prepared composite film performance in gas permeability as a function of temperature. Additionally, we investigated the effect of PEG with different molecular weights on gas transport properties, morphologies, thermal properties, and water sorption.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: