In this work, a new class of fourth-generation, zero ozone depletion potential, hydrofluoroolefin-based blowing agents were used to prepare phenolic foam. While hydrofluoroolefin blowing agents have been used previously to prepare polyurethane foams, few studies have been reported on their use in phenolic foams. We introduce an effective method for foam preparation using two low-boiling blowing agents, cis-1,1,1,4,4,4-hexafluoro-2-butene and trans-1,1,1,4,4,4-hexafluoro-2-butene, and their combinations with hexane.
View Article and Find Full Text PDFIn this work, the potential of biomass-derived date palm bio-oil as a partial substitute for phenol in the phenolic resin was evaluated. Date palm bio-oils derived from date palm were used for the partial substitution of phenol in the preparation of phenolic foam (PF) insulation materials. Date palm waste material was processed using pyrolysis at 525 °C to produce bio-oil rich in phenolic compounds.
View Article and Find Full Text PDFPhenolic foams (PFs) are considered excellent insulation materials owing to their flame retardancy and low thermal conductivity. However, their mechanical properties often lag behind those of other polymeric insulation materials. To fully exploit their properties and broaden end-use applications, the mechanical properties of PFs must be enhanced.
View Article and Find Full Text PDFPolymers (Basel)
September 2020
Phenol-formaldehyde (PF) resin continues to dominate the resin industry more than 100 years after its first synthesis. Its versatile properties such as thermal stability, chemical resistance, fire resistance, and dimensional stability make it a suitable material for a wide range of applications. PF resins have been used in the wood industry as adhesives, in paints and coatings, and in the aerospace, construction, and building industries as composites and foams.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
November 2016
Curcumin, a natural polyphenol exhibits chemopreventive and chemotherapeutic activities towards cancer. In order to improve the bioavailability and therapeutic efficacy, curcumin is encapsulated in alginate aldehyde-gelatin (Alg Ald-Gel) nanogels. Alginate aldehyde-gelatin nanogels are prepared by inverse miniemulsion technique.
View Article and Find Full Text PDFSelf assembled hybrid polyelectrolyte complex (PEC) nanoparticles are prepared from cationically modified gelatin and sodium alginate (Alg) by electrostatic complexation between the polymers. Cationised gelatin (CG) is prepared by the reaction of gelatin with ethylenediamine. Structural changes in gelatin, after modification with ethylenediamine are investigated by XRD and (1)H NMR spectroscopy.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
August 2016
Curcumin, a widely studied hydrophobic polyphenol with anticancer potential is loaded in gum arabic aldehyde-gelatin (GA Ald-Gel) nanogels to improve its bioavailability and therapeutic efficacy towards cancer cells. Physicochemical properties of the curcumin loaded GA Ald-Gel nanogels are investigated by different techniques including dynamic light scattering (DLS), NMR spectroscopy and scanning electron microscopy (SEM). These nanogels exhibit hydrodynamic diameter of 452±8nm with a zeta potential of -27mV.
View Article and Find Full Text PDFGalactosylated alginate-curcumin conjugate (LANH2-Alg Ald-Cur) is synthesized for targeted delivery of curcumin to hepatocytes exploiting asialoglycoprotein receptor (ASGPR) on hepatocytes. The synthetic procedure includes oxidation of alginate (Alg), modification of lactobionic acid (LA), grafting of targeting group (modified lactobinic acid, LANH2) and conjugation of curcumin to alginate. Alginate-curcumin conjugate (Alg-Cur) without targeting group is also prepared for the comparison of properties.
View Article and Find Full Text PDFTissue culture under microgravity provides a venue which promotes cell-cell association while avoiding the detrimental effects of high shear stress. Hepatocytes cultured on carriers or entrapped within matrices under simulated microgravity conditions showed improved cell function and proliferation. In the present study, a new approach was adopted where a non-cell adherent scaffold was incorporated with hepatospheroids (HepG2) under microgravity.
View Article and Find Full Text PDFCurcumin is conjugated to gum arabic, a highly water soluble polysaccharide to enhance the solubility and stability of curcumin. Conjugation of curcumin to gum arabic is confirmed by (1)H NMR, fluorescence and UV spectroscopy studies. The conjugate self assembles to spherical nano-micelles (270 ± 5 nm) spontaneously, when dispersed in aqueous medium.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2015
Galactosylated pullulan-curcumin conjugate (LANH2-Pu Ald-Cur SA) is developed for target specific delivery of curcumin to hepatocarcinoma cells by five step synthetic strategy, which includes oxidation of pullulan (Pu Ald), introduction of amino group to the targeting ligand (LANH2), grafting of the LANH2 to Pu Ald, modification of curcumin (Cur SA) and conjugation of Cur SA to pullulan. Nongalactosylated pullulan-curcumin conjugate (Pu-Cur SA) is also prepared to compare the enhancement in cytotoxicity offered by the targeting group. Both LANH2-Pu Ald-Cur SA and Pu-Cur SA conjugates could self assemble to micelle in water with hydrodynamic diameters of 355±9nm and 363±10nm, respectively.
View Article and Find Full Text PDFGelatin-gum arabic aldehyde nanogels designed by a nanoreactor concept using inverse miniemulsion technique were reported. Stable separate miniemulsions were prepared from gelatin (Gel) and gum arabic aldehyde (GAA). These emulsions were intermixed under sonication to obtain cross-linked nanogels.
View Article and Find Full Text PDFNanogels were developed from alginic aldehyde and gelatin by an inverse miniemulsion technique. Stable inverse miniemulsions were prepared by sonication of noncontinuous aqueous phase (mixture of alginic aldehyde and gelatin) in a continuous organic phase (Span 20 dissolved in cyclohexane). Cross-linking occurred between alginic aldehyde (AA) and gelatin (gel) in the presence of borax by Schiff's base reaction during the formation of inverse miniemulsion.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2015
Development of liver support systems has become one of the most investigated areas for the last 50 years because of the shortage of donor organs for orthotopic liver transplantations. Bioartificial liver (BAL) device is one of the alternatives for liver failure which provides a curing method and support patients to recover from certain liver failure diseases. The biological compartment of BAL is called the bioreactor where functionally active hepatocytes are maintained to support the liver specific functions.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
October 2014