Photochromic conducting molecules have emerged because of their unique capacity to modulate electrical conductivity upon exposure to light, toggling between high and low conductive states. This unique amalgamation has unlocked novel avenues for the application of these materials across diverse areas in optoelectronics and smart materials. The fundamental mechanism underpinning this phenomenon is based on the light-driven isomerization of conjugated π-systems which influences the extent of conjugation.
View Article and Find Full Text PDFThe diradical character in a molecular architecture can be customized primarily in two ways: first, by employing a quinoidal pro-aromatic system with net energy gained by aromatization that compensates for the energy required to generate the diradical species and, second, by employing an antiaromatic system having easily accessible triplet states that impart a diradical character. We have chosen a 14π aromatic framework, Boekelheide's dimethyldihydropyrene, and perturbed its aromaticity through the construction of its quinoidal form. The perturbed aromaticity was evident from the bond alteration in the X-ray diffraction structure, H nuclear magnetic resonance chemical shifts, and quantum chemical calculations.
View Article and Find Full Text PDF