Kaposi's sarcoma herpesvirus (KSHV) is the etiologic agent for primary effusion lymphoma (PEL), a non-Hodgkin type lymphoma manifesting as an effusion malignancy in the affected individual. Although KSHV has been recognized as a tumor virus for over a decade, the pathways for its tumorigenic conversion are incompletely understood, which has greatly hampered the development of efficient therapies for KSHV-induced malignancies like PEL and Kaposi's sarcoma. There are no current therapies effective against the aggressive, KSHV-induced PEL.
View Article and Find Full Text PDFThe ND1 subunit gene of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) is a hot spot for mutations causing Leber hereditary optic neuropathy and several mutations causing the mitochondrial encephalopathy, lactic acidosis and stroke-like episodes syndrome (MELAS). We have used Escherichia coli and Paracoccus denitrificans as model systems to study the effect of mutations 3946 and 3949, which change conserved residues in ND1 and cause MELAS. The vicinity of these mutations was also explored with a series of mutations in charged residues.
View Article and Find Full Text PDFp53 tumor suppressor protein acts as a critical monitor preventing survival of cells with irreparable genetic damage. Its levels are tightly controlled by its negative regulator HDM2, and are allowed to rise only during cellular stress. In our recent paper (Kurki, et al.
View Article and Find Full Text PDFNucleophosmin (NPM, B23) is an abundant nucleolar phosphoprotein involved in ribosome biogenesis, and interacts with tumor suppressor proteins p53 and Rb. Here we show that NPM is a UV damage response protein that undergoes nucleoplasmic redistribution and regulates p53 and HDM2 levels and their interaction. By utilizing RNAi approaches and analyses of endogenous and ectopically expressed proteins, we demonstrate that NPM binds HDM2 and acts as a negative regulator of p53-HDM2 interaction.
View Article and Find Full Text PDFMdm2 is a nucleoplasmic and nucleolar protein interacting with p53 and alternative reading frame (ARF) tumor suppressor proteins. Here we demonstrate relocalization and novel interactions of Mdm2 with the promyelocytic leukemia (PML) protein following cellular stress and DNA damage. We show that Mdm2 and PML interact directly in vivo and in vitro depending on the Mdm2 RING finger domain and the PML C-terminus, and that Mdm2 is recruited to the PML nuclear bodies by overexpression of PML.
View Article and Find Full Text PDFp53 is a key stress responsive cellular component. It is negatively regulated by MDM2, which is also its transcriptional target. Here we have studied the involvement of phosphatidylinositol-3-kinases (PI-3-kinase) in the regulation of p53-MDM2 pathway following cellular stress induced by UV damage and proteasomal downregulation.
View Article and Find Full Text PDFUsing a bio-oligo pull-down DNA-binding assay we investigated the binding capacity of endogenous, DNA damage-induced p53 in human diploid fibroblasts to several p53-responsive elements (REs) present in p53-regulated genes. During the course of p53 accumulation, we observed a decrease in p53 binding to the GADD45 but not to the p21(WAF1/CIP1) RE. Using mutated GADD45 sequences we show that this change is dependent on the presence of cytosines at position 3 in RE pentamers and on the p53 redox state.
View Article and Find Full Text PDF