Objective: Cytochrome P450 epoxygenases (CYP) metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs), which exhibit vasodilatory, anti-inflammatory and neuroprotective actions in experimental cerebral ischemia. We evaluated the effect of endothelial-specific CYP overexpression on cerebral blood flow, inflammatory cytokine expression and tissue infarction after focal cerebral ischemia in transgenic mice.
Approach And Results: Male and female wild-type and transgenic mice overexpressing either human CYP2J2 or CYP2C8 epoxygenases in vascular endothelium under control of the Tie2 promoter (Tie2-CYP2J2 and Tie2-CYP2C8) were subjected to 60-min middle cerebral artery occlusion (MCAO).
Inhibition of soluble epoxide hydrolase (sEH) is a potential target of therapy for ischemic injury. sEH metabolizes neuroprotective epoxyeicosatrienoic acids (EETs). We recently demonstrated that sEH inhibition reduces infarct size after middle cerebral artery occlusion (MCAO) in type 1 diabetic mice.
View Article and Find Full Text PDFHyperglycemia worsens stroke, yet rigorous glycemic control does not improve neurologic outcome. An alternative is to target downstream molecular mediator(s) triggered by hyperglycemia but independent of prevailing glycemia. Soluble epoxide hydrolase (sEH) is a potential mediator of injury via its metabolism of neuroprotective epoxyeicosatrienoic acids (EETs).
View Article and Find Full Text PDFThe minor gammaA/gamma' fibrinogen isoform contains a high affinity binding site for thrombin exosite II that is lacking in the major gammaA/gammaA fibrinogen isoform. We therefore investigated the biological consequences of the gamma' chain binding to thrombin. Thrombin-induced platelet aggregation was inhibited by gammaA/gamma' fibrinogen.
View Article and Find Full Text PDF