Dedicator of cytokinesis 3 (DOCK3) is an atypical member of the guanine nucleotide exchange factors (GEFs) and plays important roles in neurite outgrowth. DOCK3 forms a complex with Engulfment and cell motility protein 1 (Elmo1) and effectively activates Rac1 and actin dynamics. In this study, we screened 462,169 low-molecular-weight compounds and identified the hit compounds that stimulate the interaction between DOCK3 and Elmo1, and neurite outgrowth in vitro.
View Article and Find Full Text PDFActivation of neurotrophic factor signaling is a promising therapy for neurodegeneration. However, the transient nature of ligand-dependent activation limits its effectiveness. In this study, we solved this problem by inventing a system that forces membrane localization of the intracellular domain of tropomyosin receptor kinase B (iTrkB), which results in constitutive activation without ligands.
View Article and Find Full Text PDFObesity is a major risk factor for various chronic diseases such as diabetes, cardiovascular disease, and cancer; hence, there is an urgent need for an effective strategy to prevent this disorder. Currently, the anti-obesity effects of food ingredients are drawing attention. Therefore, we focused on carob, which has high antioxidant capacity and various physiological effects, and examined its anti-obesity effect.
View Article and Find Full Text PDFPurpose: We assess if α retinal ganglion cells (αRGCs) and intrinsically photosensitive retinal ganglion cells (ipRGCs) survive in mouse models of glaucoma.
Methods: Two microliters of N-methyl-D-aspartate (NMDA; 1 mM) or PBS were injected intraocularly 7 days before sacrifice. Immunohistochemical analyses of the retina were performed using antibodies against RNA-binding protein with multiple splicing (RBPMS), osteopontin, and melanopsin.
Three new compounds, namely, 4-(4'-hydroxy-3'-methoxyphenyl)-3,5,7-trihydroxycoumarin (1) and sulawesins A (2) and B (3), were isolated from the propolis of stingless bees ( Tetragonula aff. biroi) collected on South Sulawesi, Indonesia. In addition, five known compounds, glyasperin A, broussoflavonol F, (2 S)-5,7-dihydroxy-4'-methoxy-8-prenylflavanone, (1' S)-2- trans,4- trans-abscisic acid, and (1' S)-2- cis,4- trans-abscisic acid, were identified.
View Article and Find Full Text PDFThe radical scavenging activity of commercially available roasted (deep colored) and unroasted (light colored) egoma (Perilla frutescens var. frutescens) oils was evaluated by the DPPH radical scavenging method. The antiradical activity of roasted oils was higher than that of unroasted oils, and the activity of methanol-water extracts from the roasted egoma oils was significantly higher than that of unroasted oils.
View Article and Find Full Text PDF4-Vinylcatechol (4VC) has been identified as an aroma compound in roasted foods, especially coffee. It is also a component in traditional herbal medicines. This compound may be subconsciously ingested through foods and herbs.
View Article and Find Full Text PDFIn this study, the mechanism of the xanthine oxidase (XO) inhibitory activity of pyrogallol, the main inhibitor found in roasted coffee, was investigated. Pyrogallol was unstable and readily converted to purpurogallin in a pH 7.4 solution, a physiological model of human body fluids.
View Article and Find Full Text PDFHydroxyhydroquinone (HHQ) is generated during coffee bean roasting. A cup of coffee contains 0.1-1.
View Article and Find Full Text PDFIn this study, ethyl acetate-soluble parts of hot-water extracts from roasted coffee beans were found to demonstrate potent xanthine oxidase (XO) inhibition. The XO inhibitory activities and chlorogenic lactone contents (chlorogenic lactones have previously been identified as XO inhibitors in roast coffee) were measured for ethyl acetate-soluble parts prepared from coffee beans roasted to three different degrees. Although chlorogenic lactone contents decreased with higher degrees of roasting, the XO inhibitory activity did not decrease.
View Article and Find Full Text PDFJ Agric Food Chem
February 2016
Reaction products from the peroxidase-catalyzed oxidation of polyphenols in the presence of cysteine showed a potent activity for reducing metmyogolobin (MetMb) to bright-colored oxymyogolobin (MbO2). High-performance liquid chromatography (HPLC) purification of the reaction products from catechin, chlorogenic acid, dihydrocaffeic acid, hydroxytyrosol, nordihydroguaiaretic acid, and rosmarinic acid afforded corresponding S-cysteinyl compounds, the structures of which were determined by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). The isolated cysteinyl polyphenols showed a concentration-dependent reducing activity for MetMb to MbO2 for the initial 1 h.
View Article and Find Full Text PDFOxidative coupling reactions of several flavonoids with a cysteine ester (a radicalic and nucleophilic biochemical) were carried out and the abilities of the coupling products against xanthine oxidase (XO) were screened. One of the products, derived from luteolin, showed a notable inhibitory effect. A potent XO inhibitory compound was isolated from the complex mixture of the product of the coupling of luteolin and cysteine ethyl ester, and its structure was determined by NMR and MS analysis.
View Article and Find Full Text PDFThe effect of polyphenols and related phenolic compounds on the reduction of metmyoglobin (MetMb) to oxymyoglobin (MbO2), in the presence of cysteine, was investigated. Caffeic acid, dihydrocaffeic acid, and hydroxtyrosol (600 μmol/L) did not show any reducing activity individually. However, their highly potent activity in the reduction of MetMb to MbO2 was observed in the presence of equimolar amounts of cysteine.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
April 2015
This study investigated antioxidant activities of cysteine derivatives of amino and carboxylic acid moieties against lipid oxidation in anhydrous acetonitrile. Only cysteine derivatives bearing free amino or carboxylate ion were found to exert potent antioxidant activities. Sequential proton loss and electron transfer-like proton shift and subsequent electron transfer (PS-ET) mechanism may facilitate the antioxidant activities of cysteine derivatives against lipid oxidation in anhydrous media.
View Article and Find Full Text PDFXanthine oxidase (XO) inhibitory activity has been found in boiling water extracts from roasted coffee beans. Therefore, assay-guided purification of the extracts was performed using size-exclusion column chromatography, and subsequently with reversed phase HPLC to afford lactone derivatives of chlorogenic acids. Among the tested lactones, crypto- and neochlorogenic lactones showed potent XO inhibitory activities compared with three major chlorogenic acids found in coffee beans.
View Article and Find Full Text PDFInhibitory activity of Fe-ion-catalyzed radical oxidation products from 22 types of phenolic compounds toward xanthine oxidase (XO) was investigated. Phenols are readily oxidizable compounds in nature and, thus, showed potent antioxidant activities. Among the phenols screened in this study, noticeable activity was observed in the oxidation product of caffeic acid, whereas almost no XO-inhibitory activity of caffeic acid was observed.
View Article and Find Full Text PDFThe effect of antioxidant polyphenols and related phenolic compounds from plants on the reduction of metmyoglobin (MetMb) was investigated. Potent activity in the reduction of MetMb to oxymyoglobin (MbO2), a bright red protein in meat, was observed for three flavonols, kaempferol, myricetin, and quercetin, at 300 μmol/L against 60 μmol/L MetMb. Sinapic acid, catechin, nordihydroguaiaretic acid, taxifolin, morin, and ferulic acid promoted reduction at 600 μmol/L.
View Article and Find Full Text PDF