Impediments in replication fork progression cause genomic instability, mutagenesis, and severe pathologies. At stalled forks, RPA-coated single-stranded DNA (ssDNA) activates the ATR kinase and directs fork remodeling, 2 key early events of the replication stress response. RFWD3, a recently described Fanconi anemia (FA) ubiquitin ligase, associates with RPA and promotes its ubiquitylation, facilitating late steps of homologous recombination (HR).
View Article and Find Full Text PDFNucleotide excision repair (NER) eliminates highly genotoxic solar UV-induced DNA photoproducts that otherwise stimulate malignant melanoma development. Here, a genome-wide loss-of-function screen, coupling CRISPR/Cas9 technology with a flow cytometry-based DNA repair assay, was used to identify novel genes required for efficient NER in primary human fibroblasts. Interestingly, the screen revealed multiple genes encoding proteins, with no previously known involvement in UV damage repair, that significantly modulate NER uniquely during S phase of the cell cycle.
View Article and Find Full Text PDFHelix-destabilizing DNA lesions induced by environmental mutagens such as UV light cause genomic instability by strongly blocking the progression of DNA replication forks (RFs). At blocked RF, single-stranded DNA (ssDNA) accumulates and is rapidly bound by Replication Protein A (RPA) complexes. Such stretches of RPA-ssDNA constitute platforms for recruitment/activation of critical factors that promote DNA synthesis restart.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.