The calibration of an ion detection system was carried out for protons and carbon ions from a few tens of keV up to about 1 MeV energies. A Thomson spectrometer deflecting the particle beam accelerated from a laser plasma creates the ion spectra on a phosphor screen behind a micro-channel plate (MCP), which are recorded by a camera. During calibration, the ion spectra simultaneously hit the slotted CR-39 track detector installed in front of the MCP and, passing through the adjacent CR-39 stripes, the MCP.
View Article and Find Full Text PDFSpatial characterization of 0.5 MeV proton beam, driven by 12 fs, 35 mJ, 10 W/cm intense laser-foil interaction is presented. The accelerated proton beam has been applied to obtain a high-resolution, point-projection static radiograph of a fine mesh using a CR-39 plate.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2008
The spatial dependence of proton acceleration at the rear surface of a target that is irradiated by high-contrast and ultraintense laser pulses is investigated. Lateral movement of the proton acceleration position at the rear surface is observed; this is tested by a two-pinhole measurement which results in the observation of protons with a narrow energy band. This drifting is only observed when relativistic-intensity laser pulses irradiate targets with a small preplasma at oblique incidence, as is confirmed by two-dimensional particle-in-cell simulations.
View Article and Find Full Text PDF