Sustained local delivery of meloxicam by polymeric structures is desirable for preventing subacute inflammation and biofilm formation following tissue incision or injury. Our previous study demonstrated that meloxicam release from hot-melt extruded (HME) poly(ε-caprolactone) (PCL) matrices could be controlled by adjusting the drug content. Increasing drug content accelerated the drug release as the initial drug release generated a pore network to facilitate subsequent drug dissolution and diffusion.
View Article and Find Full Text PDFPoly(lactide-co-glycolide) (PLGA) polymers have been widely used for drug delivery due to their biodegradability and biocompatibility. One of the objectives of encapsulating a drug in PLGA microparticles (MPs) is to achieve an extended supply of the drug through sustained release, which can range from weeks to months. Focusing on the applications needing a relatively short-term delivery, we investigated formulation strategies to achieve a drug release from PLGA MPs for two weeks, using meloxicam as a model compound.
View Article and Find Full Text PDFFor effective resolution of regional subacute inflammation and prevention of biofouling formation, we have developed a polymeric implant that can release meloxicam, a selective cyclooxygenase (COX)-2 inhibitor, in a sustained manner. Meloxicam-loaded polymer matrices were produced by hot-melt extrusion, with commercially available biocompatible polymers, poly(ε-caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), and poly(ethylene vinyl acetate) (EVA). PLGA and EVA had a limited control over the drug release rate partly due to the acidic microenvironment and hydrophobicity, respectively.
View Article and Find Full Text PDFHemophilia B is a hereditary bleeding disorder caused by the deficiency in coagulation factor IX. Understanding coagulation and the role of factor IX as well as patient population and diagnosis are all critical factors in developing treatment strategies and regimens for hemophilia B patients. Current treatment options rely on protein replacement therapy by intravenous injection, which have markedly improved patient lifespan and quality of life.
View Article and Find Full Text PDFCurrent protein replacement therapies for hemophilia B, a genetic bleeding disorder caused by a deficiency in coagulation factor IX, rely on IV injections and infusions. Oral delivery of factor IX is a desirable needle-free option, especially for prophylaxis. We have developed a biodegradable, pH-responsive hydrogel microcarrier system based on the poly(methacrylic acid)-grafted-poly(ethylene glycol) [P(MAA-g-EG)].
View Article and Find Full Text PDFThe oral administration of hematological factor IX (FIX) can offer a convenient prophylactic treatment for hemophilia B patients. pH-Responsive hydrogels based on poly(methacrylic acid)-grafted-poly(ethylene glycol) (P(MAA-g-EG)) have been engineered as delivery vehicles for FIX. In oral delivery, such hydrogel carriers protected FIX from the gastric environment and released it under intestinal conditions as demonstrated by evaluation of the loading and release of FIX.
View Article and Find Full Text PDFIntroduction: Oral delivery of therapeutics, particularly protein-based pharmaceutics, is of great interest for safe and controlled drug delivery for patients. Hydrogels offer excellent potential as oral therapeutic systems due to inherent biocompatibility, diversity of both natural and synthetic material options and tunable properties. In particular, stimuli-responsive hydrogels exploit physiological changes along the intestinal tract to achieve site-specific, controlled release of protein, peptide and chemotherapeutic molecules for both local and systemic treatment applications.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
May 2014
Terminal, or postprocessing, sterilization of composite biomaterials is crucial for their use in wound healing and tissue-engineered devices. Recent research has focused on optimizing traditional biomaterial formulations to create better products for commercial and academic use which incorporate hydrophobic compounds or secondary gel networks. To use a hydrogel in a clinical setting, terminal sterilization is necessary to ensure patient safety.
View Article and Find Full Text PDFIntervertebral disc degeneration is characterized by a cascade of cellular, biochemical and structural changes that may lead to functional impairment and low back pain. Interleukin-1 beta (IL-1β) is strongly implicated in the etiology of disc degeneration, however there is currently no direct evidence linking IL-1β upregulation to downstream biomechanical changes. The objective of this study was to evaluate long-term agarose culture of nucleus pulposus (NP) cells as a potential in vitro model system to investigate this.
View Article and Find Full Text PDFObstructed transport of biological molecules can result in improper release of pharmaceuticals or biologics from biomedical devices. Recent studies have shown that nonionic surfactants, such as Pluronic® F68 (F68), positively alter biomaterial properties such as mesh size and microcapsule diameter. To further understand the effect of F68 (incorporated at concentrations well above the critical micelle concentration (CMC)) in traditional biomaterials, the transport properties of BSA and riboflavin were investigated in F68-alginate composite hydrogels, formed by both internal and external cross-linking with divalent cations.
View Article and Find Full Text PDF