Publications by authors named "Sarel Fleishman"

Golden Gate assembly (GGA) can seamlessly generate full-length genes from DNA fragments. In principle, GGA could be used to design combinatorial mutation libraries for protein engineering, but creating accurate, complex, and cost-effective libraries has been challenging. We present GGAssembler, a graph-theoretical method for economical design of DNA fragments that assemble a combinatorial library that encodes any desired diversity.

View Article and Find Full Text PDF

Almost all attempts to date at gene therapy approaches for monogenetic disease have used the amino acid sequences of the natural protein. In the current study, we use a designed, thermostable form of glucocerebrosidase (GCase), the enzyme defective in Gaucher disease (GD), to attempt to alleviate neurological symptoms in a GD mouse that models type 3 disease, i.e.

View Article and Find Full Text PDF

Mutations in protein active sites can dramatically improve function. The active site, however, is densely packed and extremely sensitive to mutations. Therefore, some mutations may only be tolerated in combination with others in a phenomenon known as epistasis.

View Article and Find Full Text PDF

Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage malaria vaccine antigen target, currently in a phase 2b clinical trial as a full-length soluble protein/adjuvant vaccine candidate called RH5.1/Matrix-M. We identify that disordered regions of the full-length RH5 molecule induce non-growth inhibitory antibodies in human vaccinees and that a re-engineered and stabilized immunogen (including just the alpha-helical core of RH5) induces a qualitatively superior growth inhibitory antibody response in rats vaccinated with this protein formulated in Matrix-M adjuvant.

View Article and Find Full Text PDF

Membrane proteins play critical physiological roles as receptors, channels, pumps, and transporters. Despite their importance, however, low expression levels often hamper the experimental characterization of membrane proteins. We present an automated and web-accessible design algorithm called mPROSS (https://mPROSS.

View Article and Find Full Text PDF

The field of protein design has made remarkable progress over the past decade. Historically, the low reliability of purely structure-based design methods limited their application, but recent strategies that combine structure-based and sequence-based calculations, as well as machine learning tools, have dramatically improved protein engineering and design. In this Review, we discuss how these methods have enabled the design of increasingly complex structures and therapeutically relevant activities.

View Article and Find Full Text PDF

Conventional methods for humanizing animal-derived antibodies involve grafting their complementarity-determining regions onto homologous human framework regions. However, this process can substantially lower antibody stability and antigen-binding affinity, and requires iterative mutational fine-tuning to recover the original antibody properties. Here we report a computational method for the systematic grafting of animal complementarity-determining regions onto thousands of human frameworks.

View Article and Find Full Text PDF

Protein degradation is one of the essential mechanisms that enables reshaping of the proteome landscape in response to various stimuli. The largest E3 ubiquitin ligase family that targets proteins to degradation by catalyzing ubiquitination is the cullin-RING ligases (CRLs). Many of the proteins that are regulated by CRLs are central to tumorigenesis and tumor progression, and dysregulation of the CRL family is frequently associated with cancer.

View Article and Find Full Text PDF

Albumin is the most abundant protein in the blood serum of mammals and has essential carrier and physiological roles. Albumins are also used in a wide variety of molecular and cellular experiments and in the cultivated meat industry. Despite their importance, however, albumins are challenging for heterologous expression in microbial hosts, likely due to 17 conserved intramolecular disulfide bonds.

View Article and Find Full Text PDF

Controlled degradation of proteins is necessary for ensuring their abundance and sustaining a healthy and accurately functioning proteome. One of the degradation routes involves the uncapped 20S proteasome, which cleaves proteins with a partially unfolded region, including those that are damaged or contain intrinsically disordered regions. This degradation route is tightly controlled by a recently discovered family of proteins named Catalytic Core Regulators (CCRs).

View Article and Find Full Text PDF

Mutations in a protein active site can lead to dramatic and useful changes in protein activity. The active site, however, is sensitive to mutations due to a high density of molecular interactions, substantially reducing the likelihood of obtaining functional multipoint mutants. We introduce an atomistic and machine-learning-based approach, called high-throughput Functional Libraries (htFuncLib), that designs a sequence space in which mutations form low-energy combinations that mitigate the risk of incompatible interactions.

View Article and Find Full Text PDF

Some protein binding pairs exhibit extreme specificities that functionally insulate them from homologs. Such pairs evolve mostly by accumulating single-point mutations, and mutants are selected if their affinity exceeds the threshold required for function. Thus, homologous and high-specificity binding pairs bring to light an evolutionary conundrum: how does a new specificity evolve while maintaining the required affinity in each intermediate? Until now, a fully functional single-mutation path that connects two orthogonal pairs has only been described where the pairs were mutationally close thus enabling experimental enumeration of all intermediates.

View Article and Find Full Text PDF

Until now, membrane-protein stabilization has relied on iterations of mutations and screening. We now validate a one-step algorithm, mPROSS, for stabilizing membrane proteins directly from an AlphaFold2 model structure. Applied to the lipid-generating enzyme, ceramide synthase, 37 designed mutations lead to a more stable form of human CerS2.

View Article and Find Full Text PDF

Several methods have been developed to explore interactions among water-soluble proteins or regions of proteins. However, techniques to target transmembrane domains (TMDs) have not been examined thoroughly despite their importance. Here, we developed a computational approach to design sequences that specifically modulate protein-protein interactions in the membrane.

View Article and Find Full Text PDF

The generation of enantiodivergent biocatalysts for C-H oxyfunctionalizations is ever more important in modern synthetic chemistry. Here, we have applied the FuncLib algorithm based on phylogenetic and Rosetta calculations to design a diverse repertoire of active, stable, and enantiodivergent fungal peroxygenases. 24 designs, each carrying 4-5 mutations in the catalytic core, were expressed functionally in yeast and benchmarked against characteristic model compounds.

View Article and Find Full Text PDF

White-rot fungi secrete an impressive repertoire of high-redox potential laccases (HRPLs) and peroxidases for efficient oxidation and utilization of lignin. Laccases are attractive enzymes for the chemical industry due to their broad substrate range and low environmental impact. Since expression of functional recombinant HRPLs is challenging, however, iterative-directed evolution protocols have been applied to improve their expression, activity, and stability.

View Article and Find Full Text PDF

Over half the proteins in the cytoplasm form homo or hetero-oligomeric structures. Experimentally determined structures are often considered in determining a protein's oligomeric state, but static structures miss the dynamic equilibrium between different quaternary forms. The problem is exacerbated in homo-oligomers, where the oligomeric states are challenging to characterize.

View Article and Find Full Text PDF

Blocking the interaction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with its angiotensin-converting enzyme 2 (ACE2) receptor was proved to be an effective therapeutic option. Various protein binders as well as monoclonal antibodies that effectively target the receptor-binding domain (RBD) of SARS-CoV-2 to prevent interaction with ACE2 were developed. The emergence of SARS-CoV-2 variants that accumulate alterations in the RBD can severely affect the efficacy of such immunotherapeutic agents, as is indeed the case with Omicron that resists many of the previously isolated monoclonal antibodies.

View Article and Find Full Text PDF

Recent advances in protein-design methodology have led to a dramatic increase in reliability and scale. With these advances, dozens and even thousands of designed proteins are automatically generated and screened. Nevertheless, the success rate, particularly in design of functional proteins, is low and fundamental goals such as reliable de novo design of efficient enzymes remain beyond reach.

View Article and Find Full Text PDF

The ability to alter the genomes of living cells is key to understanding how genes influence the functions of organisms and will be critical to modify living systems for useful purposes. However, this promise has long been limited by the technical challenges involved in genetic engineering. Recent advances in gene editing have bypassed some of these challenges but they are still far from ideal.

View Article and Find Full Text PDF

De novo-designed receptor transmembrane domains (TMDs) present opportunities for precise control of cellular receptor functions. We developed a de novo design strategy for generating programmed membrane proteins (proMPs): single-pass α-helical TMDs that self-assemble through computationally defined and crystallographically validated interfaces. We used these proMPs to program specific oligomeric interactions into a chimeric antigen receptor (CAR) that we expressed in mouse primary T cells and found that both in vitro CAR T cell cytokine release and in vivo antitumor activity scaled linearly with the oligomeric state encoded by the receptor TMD, from monomers up to tetramers.

View Article and Find Full Text PDF

Cardio- and cerebrovascular diseases are leading causes of death and disability, resulting in one of the highest socio-economic burdens of any disease type. The discovery of bacterial and human plasminogen activators and their use as thrombolytic drugs have revolutionized treatment of these pathologies. Fibrin-specific agents have an advantage over non-specific factors because of lower rates of deleterious side effects.

View Article and Find Full Text PDF

Stabilizing antigenic proteins as vaccine immunogens or diagnostic reagents is a stringent case of protein engineering and design as the exterior surface must maintain recognition by receptor(s) and antigen-specific antibodies at multiple distinct epitopes. This is a challenge, as stability enhancing mutations must be focused on the protein core, whereas successful computational stabilization algorithms typically select mutations at solvent-facing positions. In this study, we report the stabilization of SARS-CoV-2 Wuhan Hu-1 Spike receptor binding domain using a combination of deep mutational scanning and computational design, including the FuncLib algorithm.

View Article and Find Full Text PDF