Low levels of agricultural productivity are associated with the persistence of food insecurity, poverty, and other socio-economic stresses. Mapping and monitoring agricultural dynamics and production in real-time at high spatial resolution are essential for ensuring food security and shaping policy interventions. However, an accurate yield estimation might be challenging in some arid and semi-arid regions since input datasets are generally scarce, and access is restricted due to security challenges.
View Article and Find Full Text PDFBackground: Household surveys are the main source of demographic, health and socio-economic data in low- and middle-income countries (LMICs). To conduct such a survey, census population information mapped into enumeration areas (EAs) typically serves a sampling frame from which to generate a random sample. However, the use of census information to generate this sample frame can be problematic as in many LMIC contexts, such data are often outdated or incomplete, potentially introducing coverage issues into the sample frame.
View Article and Find Full Text PDFCrop production and yield estimation using remotely sensed data have been studied widely, but such information is generally scarce in arid and semi-arid regions. In these regions, inter-annual variation in climatic factors (such as rainfall) combined with anthropogenic factors (such as civil war) pose major risks to food security. Thus, an operational crop production estimation and forecasting system is required to help decision-makers to make early estimates of potential food availability.
View Article and Find Full Text PDF