Publications by authors named "Sarbari Acharya"

Nanomedicine enables advanced therapeutics, diagnostics, and predictive analysis, enhancing treatment outcomes and patient care. The choices and development of high-quality organic nanoparticles with relatively lower toxicity are important for achieving advanced medical goals. Among organic molecules, proteins have been prospected as smart candidates to revolutionize nanomedicine due to their inherent fascinating features.

View Article and Find Full Text PDF

Cancer is the second leading cause of death. Notwithstanding endeavors to comprehend tumor causes and therapeutic modalities, no noteworthy advancements in cancer therapy have been identified. Nanomedicine has drawn interest for its diagnostic potential because of its ability to deliver therapeutic agents specifically to tumors with little adverse effects.

View Article and Find Full Text PDF

Infectious diseases and their effective management are still a challenge in this modern era of medicine. Diseases, such as the SARS-CoV-2, Ebola virus, and Zika virus, still put human civilization at peril. Existing drug banks, which include antivirals, antibacterial, and small-molecule drugs, are the most advocated method for treatment, although effective but they still flounder in many instances.

View Article and Find Full Text PDF

Genome editing arose as a new promising approach for treating numerous intricate ailm ents including cancer. Over the past couple of decades, delivery technologies that have serendipitously been developed using viral vectors are successful to some extent in protein and nucleic acid delivery but their effectiveness still lags due to their efficiency, tissue targeting capabilities, and toxicity which must be further improved. With the infiltration of nanotechnology into every sphere of life, nano-vehicles can be implemented as an ideal modality that can overcome challenges, also can be introspective as new genome editing tools for cancer therapy owing to the safety and efficiency in clinical settings.

View Article and Find Full Text PDF

Hypoxia enhances tumor aggressiveness, thereby reducing the efficacy of anticancer therapies. Phytomedicine, which is nowadays considered as the new panacea owing to its dynamic physiological properties, is often plagued by shortcomings. Incorporating these wonder drugs in nanoparticles (phytonanomedicine) for hypoxia therapy is a new prospect in the direction of cancer management.

View Article and Find Full Text PDF

The rapid propagation of novel human coronavirus 2019 and its emergence as a pandemic raising morbidity calls for taking more appropriate measures for rapid improvement of present diagnostic techniques which are time-consuming, labour-intensive and non-portable. In this scenario, biosensors can be considered as a means to outmatch customary techniques and deliver point-of-care diagnostics for many diseases in a much better way owing to their speed, cost-effectiveness, accuracy, sensitivity and selectivity. Besides this, these biosensors have been aptly used to detect a wide spectrum of viruses thus facilitating timely delivery of correct therapy.

View Article and Find Full Text PDF

Theranostics is a revolution in cancer therapy. Hydrogels have many implications as a drug delivery vehicle and theranostics hydrogels could be a model nanotherapeutic for simultaneous cancer diagnosis and treatment.

View Article and Find Full Text PDF

Nanotechnology has become the indispensable cutting edge science providing solutions to many problems associated with human being. The application of nanotechnology associated to human health "nanomedicine" has revolutionized the drug delivery system by providing improved pharmacological and therapeutic properties of drugs. These advantageous effects of drug loaded nanocarrier systems are embraced by the pharmaceutical industries for the development of different effective nanocarriers.

View Article and Find Full Text PDF

Chronic myeloid leukemia (CML) has been the hub of exhilarating progress in cancer therapy with the advent of imatinib mesylate. However, therapeutic selectivity and drug resistance are two major issues in imatinib based leukemia therapy prompting development of strategies to surmount imatinib resistance for effective CML therapy. Growing evidences advocate that, cancer cells exhibit augmented intrinsic reactive oxygen species (ROS), due to oncogenic stimulation, amplified metabolic activity, and mitochondrial dysfunction.

View Article and Find Full Text PDF

Chimeric Bcr-Abl oncoprotein is the molecular hallmark of chronic myeloid leukemia (CML) and hence a lucrative target for therapeutic intervention of CML.However, limited efficacy of current first line treatment for CML calls attention for further development of more efficient strategies. Recently, much attention has been given to nanoparticle (NP) based drug delivery systems loaded with dual drugs to improve current disease therapies by overcoming toxicity and other side effects associated with high doses of single drugs.

View Article and Find Full Text PDF

Unlabelled: Currently, effective drug delivery in pancreatic cancer treatment is a major challenge. Nanomedicine plays an essential role by delivering anticancer drugs in a targeted manner to the malignant tumor cells, leading to increased efficacy by reducing the toxicity of anticancer drugs to normal, sensitive sites. This study investigated the preparation and characterization of a targeted system represented by Herceptin-conjugated gemcitabine-loaded chitosan nanoparticles (HER2-Gem-CS-NPs) for pancreatic cancer therapy.

View Article and Find Full Text PDF

As mortality due to cancer continues to rise, advances in nanotechnology have significantly become an effective approach for achieving efficient drug targeting to tumour tissues by circumventing all the shortcomings of conventional chemotherapy. During the past decade, the importance of polymeric drug-delivery systems in oncology has grown exponentially. In this context, poly(lactic-co-glycolic acid) (PLGA) is a widely used polymer for fabricating 'nanoparticles' because of biocompatibility, long-standing track record in biomedical applications and well-documented utility for sustained drug release, and hence has been the centre of focus for developing drug-loaded nanoparticles for cancer therapy.

View Article and Find Full Text PDF

The application of nanotechnology for cancer therapy has received considerable attention in recent years. Cancer nanotechnology (an interdisciplinary area of research in science, engineering and medicine) is an upcoming field with extensive applications. It provides a unique approach and comprehensive technology against cancer through early diagnosis, prediction, prevention, personalized therapy and medicine.

View Article and Find Full Text PDF

Aim: To develop a suitable formulation of curcumin-encapsulated methoxy poly(ethylene glycol) (MePEG)/poly-epsilon-caprolactone (PCL) diblock copolymeric micelle by varying the copolymer ratio, for achieving small sized micelles with high encapsulation of curcumin. To evaluate the micelle's aqueous solubility and stability, efficiency of cellular uptake, cell cytotoxicity and ability to induce apoptosis on pancreatic cell lines.

Method: Amphiphilic diblock copolymers (composed of MePEG and PCL) were used in various ratios for the preparation of curcumin-encapsulated micelles using a modified dialysis method.

View Article and Find Full Text PDF

Selective drug delivery is an important approach with great potential for overcoming problems associated with the systemic toxicity and poor bioavailability of antineoplastic drugs. Nanomedicine plays a pivotal role by delivering drugs in a targeted manner to the malignant tumor cells thereby reducing the systemic toxicity of the anticancer drugs. The objective of this study was to prepare and characterize rapamycin loaded polymeric poly(lactide-co-glycolide) (PLGA) nanoparticles (NP) that were surface conjugated with antibodies to epidermal growth factor receptor (EGFR), highly expressed on breast cancer cells, using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) mediated cross linking agents.

View Article and Find Full Text PDF

Aim: To increase the entrapment efficiency of doxycycline (DXY)-loaded poly(D,L-lactide-co-glycolide) (PLGA):poly(epsilon-caprolactone) (PCL) nanoparticles by up to 70% by varying the different formulation parameters such as polymer ratio, amount of drug loading (w/w), solvent selection, electrolyte addition and pH in the formulation.

Method: Biodegradable polymers PLGA and PCL are used in various ratios for nanoparticle preparation using the water-in-oil-in-water double emulsion technique for water-soluble DXY. The physicochemical characterization of nanoparticles included size and surface charge measurement, study of surface morphology using scanning-electron microscopy, Fourier transform infrared spectroscopy study, differential scanning calorimetry analysis and in vitro release kinetics study.

View Article and Find Full Text PDF