Lysyl oxidase (LOX) is an enzyme critically involved in collagen maturation, whose activity releases HO as a by-product. Previous studies demonstrated that LOX over-expression enhances reactive oxygen species (ROS) production and exacerbates cardiac remodeling induced by pressure overload. However, whether LOX influences acute myocardial infarction and post-infarct left ventricular remodeling and the contribution of LOX to myocardial oxidative stress following ischemia-reperfusion have not been analyzed.
View Article and Find Full Text PDFAbdominal aortic aneurysm (AAA) is a common life-threatening condition characterized by exacerbated inflammation and the generation of reactive oxygen species. Pharmacological treatments to slow AAA progression or to prevent its rupture remain a challenge. Targeting phosphodiesterase 4 (PDE4) has been verified as an effective therapeutic strategy for an array of inflammatory conditions; however, no studies have assessed yet PDE4 in AAA.
View Article and Find Full Text PDFConnexin 43 (Cx43) is essential for cardiac electrical coupling, but its effects on myocardial fibrosis is controversial. Here, we analyzed the role of Cx43 in myocardial fibrosis caused by angiotensin II (AngII) using Cx43 and Cx43 inducible knock-out (Cx43 content: 50%) mice treated with vehicle or 4-hydroxytamoxifen (4-OHT) to induce a Cre-ER(T)-mediated global deletion of the Cx43 floxed allele. Myocardial collagen content was enhanced by AngII in all groups (n = 8-10/group, < 0.
View Article and Find Full Text PDFLysyl oxidases (LOX and LOX-likes (LOXLs) isoenzymes) belong to a family of copper-dependent enzymes classically involved in the covalent cross-linking of collagen and elastin, a pivotal process that ensures extracellular matrix (ECM) stability and provides the tensile and elastic characteristics of connective tissues. Besides this structural role, in the last years, novel biological properties have been attributed to these enzymes, which can critically influence cardiovascular function. LOX and LOXLs control cell proliferation, migration, adhesion, differentiation, oxidative stress, and transcriptional regulation and, thereby, their dysregulation has been linked to a myriad of cardiovascular pathologies.
View Article and Find Full Text PDFLysyl oxidase (LOX) plays a critical role in extracellular matrix maturation and limits VSMC proliferation and vascular remodeling. We have investigated whether this anti-proliferative effect relies on the extracellular catalytically active LOX or on its biologically active propeptide (LOX-PP). High expression levels of both LOX and LOX-PP were detected in the vascular wall from transgenic mice over-expressing the full-length human LOX cDNA under the control of SM22α promoter (TgLOX), which targets the transgene to VSMC without affecting the expression of mouse LOX isoenzymes.
View Article and Find Full Text PDFIntroduction: Lysyl oxidase (LOX) participates in the assembly of collagen and elastin fibres. The impact of vascular LOX over-expression on extracellular matrix (ECM) structure and its contribution to oxidative stress has been analysed.
Methods: Studies were conducted on mice over-expressing LOX (Tg), specifically in smooth muscle cells (VSMC).
Lysyl oxidase (LOX) controls matrix remodeling, a key process that underlies cardiovascular diseases and heart failure; however, a lack of suitable animal models has limited our knowledge with regard to the contribution of LOX to cardiac dysfunction. Here, we assessed the impact of LOX overexpression on ventricular function and cardiac hypertrophy in a transgenic LOX (TgLOX) mouse model with a strong cardiac expression of human LOX. TgLOX mice exhibited high expression of the transgene in cardiomyocytes and cardiofibroblasts, which are associated with enhanced LOX activity and HO production and with cardiofibroblast reprogramming.
View Article and Find Full Text PDFAims: Vascular stiffness, structural elastin abnormalities, and increased oxidative stress are hallmarks of hypertension. Lysyl oxidase (LOX) is an elastin crosslinking enzyme that produces HO as a by-product. We addressed the interplay between LOX, oxidative stress, vessel stiffness, and elastin.
View Article and Find Full Text PDFIntroduction: Fibulin-5 (FBLN5) is an elastogenic protein critically involved in extracellular matrix (ECM) remodelling, a key process in abdominal aortic aneurysm (AAA). However, the possible contribution of FBLN5 to AAA development has not been addressed.
Methods: Expression levels were determined by real-time PCR and Western blot in human abdominal aorta from patients with AAA or healthy donors, as well as in human aortic vascular smooth muscle cells (VSMC).
Aims: Destructive remodelling of extracellular matrix (ECM) and inflammation lead to dilation and ultimately abdominal aortic aneurysm (AAA). Fibulin-5 (FBLN5) mediates cell-ECM interactions and elastic fibre assembly and is critical for ECM remodelling. We aimed to characterize FBLN5 regulation in human AAA and analyse the underlying mechanisms.
View Article and Find Full Text PDFClinical management of abdominal aortic aneurysm (AAA) is currently limited to elective surgical repair because an effective pharmacotherapy is still awaited. Inhibition of histone deacetylase (HDAC) activity could be a promising therapeutic option in cardiovascular diseases. We aimed to characterise HDAC expression in human AAA and to evaluate the therapeutic potential of class I and IIa HDAC inhibitors in the AAA model of angiotensin II (Ang II)-infused apolipoprotein-E-deficient (ApoE(-/-)) mice.
View Article and Find Full Text PDFExtracellular matrix (ECM) remodelling of the adipose tissue plays a pivotal role in the pathophysiology of obesity. The lysyl oxidase (LOX) family of amine oxidases, including LOX and LOX-like (LOXL) isoenzymes, controls ECM maturation, and upregulation of LOX activity is essential in fibrosis; however, its involvement in adipose tissue dysfunction in obesity is unclear. In this study, we observed that LOX is the main isoenzyme expressed in human adipose tissue and that its expression is strongly upregulated in samples from obese individuals that had been referred to bariatric surgery.
View Article and Find Full Text PDFLysyl oxidase (LOX) is an extracellular matrix-modifying enzyme that seems to play a critical role in vascular remodelling. However, the lack of viable LOX-deficient animal models has been an obstacle to deep in LOX biology. In this study we have developed a transgenic mouse model that over-expresses LOX in vascular smooth muscle cells (VSMC) to clarify whether LOX could regulate VSMC phenotype and vascular remodelling.
View Article and Find Full Text PDF