Deficits in striatal brain-derived neurotrophic factor (BDNF) delivery and/or BDNF/tropomyosin receptor kinase B (TrkB) signaling may contribute to neurotrophic support reduction and selective early degeneration of striatal medium spiny neurons in Huntington's disease (HD). Furthermore, we and others have demonstrated that TrkB/p75 imbalance in vitro increases the vulnerability of striatal neurons to excitotoxic insults and induces corticostriatal synaptic alterations. We have now expanded these studies by analyzing the consequences of BDNF/TrkB/p75 imbalance in the onset of motor behavior and striatal neuropathology in HD mice.
View Article and Find Full Text PDFBDNF is a growth factor with important roles in the nervous system in both physiological and pathological conditions, but the mechanisms controlling its secretion are not completely understood. Here, we show that ARMS/Kidins220 negatively regulates BDNF secretion in neurons from the CNS and PNS. Downregulation of the ARMS/Kidins220 protein in the adult mouse brain increases regulated BDNF secretion, leading to its accumulation in the striatum.
View Article and Find Full Text PDFUbiquitination of the TrkA neurotrophin receptor in response to NGF is critical in the regulation of TrkA activation and functions. TrkA is ubiquitinated, among other E3 ubiquitin ligases, by Nedd4-2. To understand mechanistically how TrkA ubiquitination is regulated, we performed a siRNA screening to identify deubiquitinating enzymes and found that USP36 acts as an important regulator of TrkA activation kinetics and ubiquitination.
View Article and Find Full Text PDFProper development of the nervous system requires a temporally and spatially orchestrated set of events including differentiation, synapse formation and neurotransmission. Nerve growth factor (NGF) acting through the TrkA neurotrophin receptor (also known as NTRK1) regulates many of these events. However, the molecular mechanisms responsible for NGF-regulated secretion are not completely understood.
View Article and Find Full Text PDFBackground: Morphine is one of the first-line therapies for the treatment of pain despite its secondary effects. It modifies the expression of epigenetic factors like miRNAs. In the present study, we analyzed miR-212 and miR-132 and their implication in morphine effects in the zebrafish Central Nervous System (CNS) through the regulation of Bdnf expression.
View Article and Find Full Text PDFThe CRB proteins CRB1, CRB2 and CRB3 are members of the cell polarity complex Crumbs in mammals that together with Scribble and Par complexes stablish the polarity of a variety of cell types. Although many members of the Crumbs complex proteins are expressed in the retinal pigment epithelium (RPE), and even though the mRNA of CRB2 has been detected in ARPE-19 cells and in the RPE/Choroid, to date no CRB protein has yet been found in this tissue. To investigate this possibility, we generated an antibody that specifically recognize the mouse CRB2 protein, and we demonstrate the expression of CRB2 in mouse RPE.
View Article and Find Full Text PDFThe development of the nervous system is a temporally and spatially coordinated process that relies on the proper regulation of the genes involved. Neurotrophins and their receptors are directly responsible for the survival and differentiation of sensory and sympathetic neurons; however, it is not fully understood how genes encoding Trk neurotrophin receptors are regulated. Here, we show that rat Bex3 protein specifically regulates TrkA expression by acting at the trkA gene promoter level.
View Article and Find Full Text PDFTrk neurotrophin receptor ubiquitination in response to ligand activation regulates signaling, trafficking, and degradation of the receptors. However, the in vivo consequences of Trk ubiquitination remain to be addressed. We have developed a mouse model with a mutation in the TrkA neurotrophin receptor (P782S) that results in reduced ubiquitination due to a lack of binding to the E3 ubiquitin ligase, Nedd4-2.
View Article and Find Full Text PDFUpon activation by nerve growth factor (NGF), TrkA is internalized, trafficked and sorted through different endosomal compartments. Proper TrkA trafficking and sorting are crucial events as alteration of these processes hinders NGF-mediated functions. However, it is not fully known which proteins are involved in the trafficking and sorting of TrkA.
View Article and Find Full Text PDF