Publications by authors named "Sarawut Sirithammajak"

COVID-19 has afflicted millions of lives worldwide. Although there are many rapid methods to detect it based on colorimetric loop-mediated isothermal amplification, there remains room for improvement. This study aims to 1) integrate multiple primers into a singleplex assay to enhance the diagnostic sensitivity, and 2) utilize a high-throughput smartphone-operatable AI-driven color reading tool to enable a rapid result analysis.

View Article and Find Full Text PDF

Background: Breast cancer is the most frequently diagnosed malignancy among women, resulting from abnormal proliferation of mammary epithelial cells. The highly vascularized nature of breast tissue leads to a high incidence of breast cancer metastases, resulting in a poor survival rate. Previous studies suggest that human mesenchymal stem cells (hMSCs) play essential roles in the growth, metastasis, and drug responses of many cancers, including breast cancer.

View Article and Find Full Text PDF

Colorimetric loop-mediated DNA isothermal amplification-based assays have gained momentum in the diagnosis of COVID-19 owing to their unmatched feasibility in low-resource settings. However, the vast majority of them are restricted to proprietary pH-sensitive dyes that limit downstream assay optimization or hinder efficient result interpretation. To address this problem, we developed a novel dual colorimetric RT-LAMP assay using in-house pH-dependent indicators to maximize the visual detection and assay simplicity, and further integrated it with the artificial intelligence (AI) operated tool (RT-LAMP-DETR) to enable a more precise and rapid result analysis in large scale testing.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (Mtb) is an insidious scourge that has afflicted millions of people worldwide. Although there are many rapid methods to detect it based on loop-mediated isothermal amplification (LAMP) and a lateral flow dipstick (LFD), this study made further improvements using a new set of primers to enhance LAMP performance and a novel DNA probe system to simplify detection and increase specificity. The new probe system eliminates the post-LAMP hybridization step typically required for LFD assays by allowing co-hybridization and amplification of target DNA in one reaction while preventing self-polymerization that could lead to false-positive results.

View Article and Find Full Text PDF

Vibrio parahaemolyticus is one of the most important foodborne pathogens that cause various life-threatening diseases in human and animals. Here, we present a rapid detection platform for V. parahaemolyticus by combining loop-mediated isothermal amplification (LAMP) and disposable electrochemical sensors based on screen-printed graphene electrodes (SPGEs).

View Article and Find Full Text PDF

Acute hepatopancreatic necrosis disease (AHPND) is a component cause of early mortality syndrome (EMS) of shrimp. In 2013, the causative agent was found to be unique isolates of Vibrio parahaemolyticus (VPAHPND) that contained a 69 kbp plasmid (pAP1) carrying binary Pir-like toxin genes PirvpA and PirvpB. In Thailand, AHPND was first recognized in 2012, prior to knowledge of the causative agent, and it subsequently led to a precipitous drop in shrimp production.

View Article and Find Full Text PDF
Article Synopsis
  • Shewanella putrefaciens is increasingly found in marine and freshwater fish, necessitating cost-effective detection methods for monitoring this pathogen.
  • Our colorogenic LAMP assay with calcein allows for quick and visually identifiable detection of S. putrefaciens in cultured tilapia, achieving results in 45 minutes with significantly higher sensitivity than traditional PCR.
  • Analysis of 389 tilapia samples revealed a 35% infection rate, particularly in gonads and fertilized eggs, highlighting the risk of transmission to fry in breeding programs.
View Article and Find Full Text PDF

Flavobacterium columnare, the causative agent of columnaris disease in fish, affects many economically important freshwater fish species. A colorimetric method of loop-mediated isothermal amplification with the pre-addition of calcein (LAMP-calcein) was developed and used to detect the presence of F. columnare in farmed tilapia (Nile Tilapia Oreochromis niloticus and red tilapia [Nile Tilapia × Mozambique Tilapia O.

View Article and Find Full Text PDF