In this research, blends of bio-based polybenzoxazine (V-fa) and polycaprolactone (PCL) with different molecular weights (M) (14,000, 45,000, and 80,000 Da) were prepared with varying PCL content from 10 to 95 wt%. The spectra measured using Fourier Transform Infrared Spectroscopy (FTIR) may indicate the presence of hydrogen bonding between two polymeric components. The thermograms obtained using a Differential Scanning Calorimeter (DSC) and dynamic mechanical analyzer (DMA) exhibited a shift in glass transition temperature (T), which indicated partial miscibility between V-fa and PCL.
View Article and Find Full Text PDFThis study investigated the sustainable toughening of polylactic acid (PLA) by incorporating ultrafine fully vulcanized powdered natural rubber graft-copolymerized with poly-styrene-co-acrylonitrile (UFPNR-SAN). We investigated the effect of the styrene-to-acrylonitrile ratio (ST:AN) used during the grafting process on the final UFPNR-SAN compatibility with PLA. The ST:AN ratio was systematically varied during the grafting reaction to prepare UFPNR-SAN with a range of different surface energies.
View Article and Find Full Text PDFBiocopolymers based on vanillin/fufurylamine-biobenzoxazine (V-fa) and epoxide castor oil (ECO), a bioepoxy, were prepared for application as dental fiber-reinforced composite post. The mechanical and thermal properties of the V-fa/ECO biocopolymers were assessed with regard to the influence of ECO content. The addition of the ECO at an amount of 20% by weight into the poly(V-fa) preserved the stiffness, glass transition temperature and thermal stability nearly to the poly(V-fa).
View Article and Find Full Text PDFIn this work, shape memory polymers (SMPs) were developed from a combination of a bio-based benzoxazine (BZ) monomer and polyurethane prepolymer (PU-prepolymer), both derived from bio-based raw materials. The bio-based BZ monomer (V-fa monomer) was synthesized through a Mannich condensation reaction using vanillin, paraformaldehyde, and furfurylamine. The bio-based PU-prepolymer was obtained by reacting palm oil polyol (MW = 1400 Da) and toluene diisocyanate (TDI).
View Article and Find Full Text PDFShape-memory carbon fiber (CF) polymer composites reinforced with graphene nanoplatelets (GnPs) as a filler based on a bio-based V-fa/ECO copolymer were prepared at different graphene GnPs and CF mass fractions using the hand lay-up and hot-pressing methods. The obtained composite specimens were subjected to flexural, dynamic mechanical, and shape-memory analyses. The obtained results revealed that the flexural strength and modulus were improved by the addition of the GnPs and CF due to the improvement in the interfacial adhesion and fiber reinforcement with up to 3 wt.
View Article and Find Full Text PDFIn this research, benzoxazine (BA-a) and diamino polysiloxane (PSX750) blends were prepared at 0-50 wt% of BA-a. The interactions between two polymeric components were investigated via a Fourier Transform Infrared Spectrometer (FT-IR). The thermal properties of the blends were also determined with Dynamic Mechanical Analyzer (DMA) and Thermogravimetric Analyzer (TGA).
View Article and Find Full Text PDFGlass fiber post based on the new polymeric material, polybenzoxazine, is prepared and the effects of glass fiber contents on mechanical and thermal properties are evaluated. The mechanical response to externally applied loads of tooth restored with glass fiber-reinforced polybenzoxazine composite posts is also simulated by finite element analysis of a tridimensional model and compared with the response to that of a natural tooth. The reinforcing of glass fiber can help improve the mechanical and thermal properties of the polybenzoxazine influenced by the interfacial adhesion between the glass fiber and polybenzoxazine matrix, except for the relatively high mechanical property of the glass fiber.
View Article and Find Full Text PDFThis research aims to modify ultrafine fully vulcanized powdered natural rubber (UFPNR) prepared by emulsion graft-copolymerization with styrene (St) and acrylonitrile (AN) monomers onto deproteinized natural rubber (DPNR). The effects of monomers content and St/AN weight ratio on grafting efficiency and thermal stability of the developed DPNR-g-(PS-co-PAN) were investigated. The results showed that grafting efficiency was enhanced up to 86% with monomers content 15 phr and weight ratio St:AN 80:20.
View Article and Find Full Text PDFIn this paper, the effects of organic based stabilizers (OBS) are investigated and compared with traditional lead (Pb) and calcium zinc (CaZn) heat stabilizers regarding their processability, mechanical property, and thermal degradation behaviors in rigid PVC pipe applications. In addition, the effects of repeated processing cycles on the degree of gelation and the impact strength of the PVC/OBS, PVC/CaZn, and PVC/Pb are also examined. A repeated processing cycle of those three types of the heat stabilizers up to four cycles was found to increase the degree of gelation and proved no significant effect on the impact strength and heat resistance of the resulting PVC samples.
View Article and Find Full Text PDFGraft copolymers, deproteinized natural rubber-graft-polystyrene (DPNR-g-PS) and deproteinized natural rubber-graft-polyacrylonitrile (DPNR-g-PAN), were prepared by the grafting of styrene (St) or acrylonitrile (AN) monomers onto DPNR latex via emulsion copolymerization. Then, ultrafine fully vulcanized powdered natural rubbers (UFPNRs) were produced by electron beam irradiation of the graft copolymers in the presence of di-trimethylolpropane tetra-acrylate (DTMPTA) as a crosslinking agent and, subsequently, a fast spray drying process. The effects of St or AN monomer contents and the radiation doses on the chemical structure, thermal stability, and physical properties of the graft copolymers and UFPNRs were investigated.
View Article and Find Full Text PDFThe aim of this research project is to analyze support panels that are based on aramid fabrics which are reinforced with polybenzoxazine/urethane (poly(BA-a/PU)) composites and contain multiwalled carbon nanotubes (MWCNTs). Through the measurement of mechanical properties and a series of ballistic-impact tests that used 7.62 × 51 mm projectiles (National Institute of Justice (NIJ), level III), the incorporated MWCNTs were found to enhance the energy-absorption () property of the composites, improve ballistic performance, and reduce damage.
View Article and Find Full Text PDFAsbestos-free friction composite based on ultrafine full-vulcanized acrylonitrile butadiene rubber particles (UFNBRPs)-modified polybenzoxazine was successfully developed. The UFNBRPs-modified polybenzoxazine friction composite was characterized for chemical, tribological, and mechanical properties as well as thermal stability. The UFNBRPs not only act as a filler to reduce noise in the friction composites due to their suitable viscoelastic behaviors but also play a key role in friction modifiers to enhance friction coefficient and wear resistance in the polybenzoxazine composites.
View Article and Find Full Text PDFA series of substituted polybenzoxazines was synthesized and studied as binders in non-asbestos friction composite materials. The structures of the polybenzoxazines were varied in a systemic fashion by increasing the number and position of pendant alkyl (methyl) groups and was accomplished using the respective aromatic amines during the polymer synthesis step. By investigating the key thermomechanical and tribological characteristics displayed by the composite materials, the underlying structure-properties relationships were deconvoluted.
View Article and Find Full Text PDFUltrafine fully vulcanized powdered natural rubber (UFPNR) has a promising application as a renewable toughening modifier in polymer matrices. In this work, the effects of acrylate coagents, which had different amounts of functional groups, on properties of UFPNR produced by radiation vulcanization and spray-drying was systematically investigated for the first time. Dipropylene glycol diacrylate (DPGDA), trimethylol propane trimethaacrylate (TMPTMA), and ditrimethylol propane tetraacrylate (DTMPTA) were used as coagents with two, three, and four acrylate groups, respectively.
View Article and Find Full Text PDFPolymers (Basel)
December 2020
This study aims to develop a lightweight ballistic helmet based on nanocomposite with matrix of the copolymer of benzoxazine with an urethane prepolymer [poly(BA-a-co-PU)], at mass ratio 80/20, reinforced with aramid fabric and multi-walled carbon nanotubes (MWCNTs). This has a protection level II according to the National Institute of Justice (NIJ) 0106.01 standard.
View Article and Find Full Text PDFWhen dealing with smart polymers, in particular with shape memory polymers, the polymer type and composition specify the overall material properties and in particular the extent of the shape memory effect. Polybenzoxazines as a polymer with high potential for structural applications represent a promising component for materials with both shape memory effect and structurally interesting material properties. This minireview gives insight into how the shape memory effect, in particular the shape recovery event, is influenced by internal factors such as polymer structure, morphology and external factors such as filler addition.
View Article and Find Full Text PDFSmart materials with light-actuated shape memory effects are developed from renewable resources in this work. Bio-based benzoxazine resin is prepared from vanillin, furfurylamine, and paraformaldehyde by utilizing the Mannich-like condensation. Vanillin-furfurylamine-containing benzoxazine resin (V-fa) is subsequently copolymerized with epoxidized castor oil (ECO).
View Article and Find Full Text PDFWood-substituted composites from matrices based on ternary mixtures of benzoxazine, epoxy, and phenolic novolac resins (BEP resins) using woodflour (Hevea brasiliensis) as filler are developed. The results reveal that the addition of epoxy resin into benzoxazine resin can lower the liquefying temperature of the ternary systems whereas rheological characterization of the gel points indicates an evident delay of the vitrification time as epoxy content increased. The gelation of the ternary mixtures shows an Arrhenius-typed behavior and the gel time can be well predicted by an Arrhenius equation with activation energy of 35-40kJ/mol.
View Article and Find Full Text PDF