Publications by authors named "Saravanapriyan Sriraman"

The atomic layer etching of chlorinated germanium surfaces under argon bombardment was simulated using molecular dynamics with a newly fitted Tersoff potential. The chlorination energy determines the threshold energy for etching and the number of etched atoms in the bombardment phase. Etch rate is determined by bombardment energy.

View Article and Find Full Text PDF

We use Bayesian inference to derive the rate coefficients of a coarse master equation from molecular dynamics simulations. Results from multiple short simulation trajectories are used to estimate propagators. A likelihood function constructed as a product of the propagators provides a posterior distribution of the free coefficients in the rate matrix determining the Markovian master equation.

View Article and Find Full Text PDF

Using a coarse-grained molecular dynamics (CMD) approach we study the apparent nonlinear dynamics of water molecules filling or emptying carbon nanotubes as a function of system parameters. Different levels of the pore hydrophobicity give rise to tubes that are empty, water-filled, or fluctuate between these two long-lived metastable states. The corresponding coarse-grained free-energy surfaces and their hysteretic parameter dependence are explored by linking MD to continuum fixed point and bifurcation algorithms.

View Article and Find Full Text PDF

Hydrogenated amorphous and nanocrystalline silicon films manufactured by plasma deposition techniques are used widely in electronic and optoelectronic devices. The crystalline fraction and grain size of these films determines electronic and optical properties; the nanocrystal nucleation mechanism, which dictates the final film structure, is governed by the interactions between the hydrogen atoms of the plasma and the solid silicon matrix. Fundamental understanding of these interactions is important for optimizing the film structure and properties.

View Article and Find Full Text PDF