Numerous studies have been reported on CO facilitated transport membrane synthesis, but few works have dealt with the interaction between material synthesis and transport modelling aspects for optimization purposes. In this work, a hybrid fixed-site carrier membrane was prepared using polyallylamine with 10 wt% polyvinyl alcohol and 0.2 wt% graphene oxide.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2019
The transition toward sustainable processing entails the use of biobased alternatives as functional materials to reduce the overall carbon footprint. Nanocellulose, due to its natural availability, biodegradability, excellent mechanical properties, tunable surface, and high aspect ratio, is attracting more and more interest as a nanoscale additive in polymeric membranes. In this work, an effective way to modify nanocellulose fibril surfaces for performance enhancement in CO separation membranes has been demonstrated.
View Article and Find Full Text PDFNanocellulose is a promising and sustainable biobased nanomaterial because of its excellent mechanical properties, biocompatibility, natural abundance, and especially its high aspect ratio. Interest in applying nanocellulose as nanofillers in membrane fabrication has been growing rapidly in recent years. In the present work, nanocellulose crystals (CNCs) and nanocellulose fibers (CNFs) were incorporated into polyvinyl alcohol (PVA) to prepare evenly dispersed nanocomposites.
View Article and Find Full Text PDFApplication of conventional polymeric membranes in CO₂ separation processes are limited by the existing trade-off between permeability and selectivity represented by the renowned upper bound. Addition of porous nanofillers in polymeric membranes is a promising approach to transcend the upper bound, owing to their superior separation capabilities. Porous nanofillers entice increased attention over nonporous counterparts due to their inherent CO₂ uptake capacities and secondary transport pathways when added to polymer matrices.
View Article and Find Full Text PDFMembrane technology has the potential to be an eco-friendly and energy-saving solution for the separation of CO₂ from different gaseous streams due to the lower cost and the superior manufacturing features. However, the performances of membranes made of conventional polymers are limited by the trade-off between the permeability and selectivity. Improving the membrane performance through the addition of nanofillers within the polymer matrix offers a promising strategy to achieve superior separation performance.
View Article and Find Full Text PDF