ACS Appl Nano Mater
January 2021
The scalable and conformal synthesis of two-dimensional (2D) transition metal dichalcogenide (TMDC) heterostructures is a persisting challenge for their implementation in next-generation devices. In this work, we report the synthesis of nanometer-thick 2D TMDC heterostructures consisting of TiS -NbS on both planar and 3D structures using atomic layer deposition (ALD) at low temperatures (200-300 °C). To this end, a process was developed for the growth of 2D NbS by thermal ALD using (-butylimido)-tris-(diethylamino)-niobium (TBTDEN) and HS gas.
View Article and Find Full Text PDFPhase-controlled synthesis of two-dimensional (2D) transition-metal chalcogenides (TMCs) at low temperatures with a precise thickness control has to date been rarely reported. Here, we report on a process for the phase-controlled synthesis of TiS (metallic) and TiS (semiconducting) nanolayers by atomic layer deposition (ALD) with precise thickness control. The phase control has been obtained by carefully tuning the deposition temperature and coreactant composition during ALD.
View Article and Find Full Text PDF