Circulating tumour DNA (ctDNA) allows genotyping and minimal residual disease (MRD) detection in lymphomas. Using a next-generation sequencing (NGS) approach (EuroClonality-NDC), we evaluated the clinical and prognostic value of ctDNA in a series of R-CHOP-treated diffuse large B-cell lymphoma (DLBCL) patients at baseline (n = 68) and after two cycles (n = 59), monitored by metabolic imaging (positron emission tomography combined with computed tomography [PET/CT]). A molecular marker was identified in 61/68 (90%) ctDNA samples at diagnosis.
View Article and Find Full Text PDFSingle-cell DNA sequencing can address the sequence of somatic genetic events during myeloid transformation in relapsed acute myeloid leukemia (AML). We present an -mutated AML patient with an initial low ratio of -ITD (low-risk ELN-2017), treated with midostaurin combined with standard chemotherapy as front-line treatment, and with salvage therapy plus gilteritinib following allogenic stem cell transplantation after relapse. Simultaneous single-cell DNA sequencing and cell-surface immunophenotyping was used in diagnostic and relapse samples to understand the clinical scenario of this patient and to reconstruct the clonal composition of both tumors.
View Article and Find Full Text PDFResponses to treatment have improved over the last decades for patients with multiple myeloma. This is a consequence of the introduction of new drugs that have been successfully combined in different clinical contexts: newly diagnosed, transplant-eligible or ineligible patients, as well as in the relapsed/refractory setting. However, a great proportion of patients continue to relapse, even those achieving complete response, which underlines the need for updated response criteria.
View Article and Find Full Text PDFTo provide insight into the subclonal architecture and co-dependency patterns of the alterations in Waldenström's macroglobulinemia (WM), we performed single-cell mutational and protein profiling of eight patients. A custom panel was designed to screen for mutations and copy number alterations at the single-cell level in samples taken from patients at diagnosis (n=5) or at disease progression (n=3). Results showed that in asymptomatic WM at diagnosis, MYD88L265P was the predominant clonal alteration; other events, if present, were secondary and subclonal to MYD88L265P.
View Article and Find Full Text PDFMultiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk.
View Article and Find Full Text PDFThe term liquid biopsy (LB) refers to molecules such as proteins, DNA, RNA, cells, or extracellular vesicles in blood and other bodily fluids that originate from the primary and/or metastatic tumor. LB has emerged as a mainstay in translational research and has started to become part of clinical oncology practice, providing a minimally invasive alternative to solid biopsy. The LB allows real-time monitoring of a tumor via a minimally invasive sample extraction, such as blood.
View Article and Find Full Text PDFThe gene has a physiological role in the innate immune system. Somatic mutations in , including the most common L265P, have been associated with the development of certain types of lymphoma. is present in more than 90% of patients with Waldenström's macroglobulinemia (WM) and IgM monoclonal gammopathy of undetermined significance (IgM-MGUS).
View Article and Find Full Text PDFContext.—: Minimal residual disease (MRD) is a major prognostic factor in multiple myeloma, although validated technologies are limited.
Objective.
Current diagnostic standards for lymphoproliferative disorders include multiple tests for detection of clonal immunoglobulin (IG) and/or T-cell receptor (TCR) rearrangements, translocations, copy-number alterations (CNAs), and somatic mutations. The EuroClonality-NGS DNA Capture (EuroClonality-NDC) assay was designed as an integrated tool to characterize these alterations by capturing IGH switch regions along with variable, diversity, and joining genes of all IG and TCR loci in addition to clinically relevant genes for CNA and mutation analysis. Diagnostic performance against standard-of-care clinical testing was assessed in a cohort of 280 B- and T-cell malignancies from 10 European laboratories, including 88 formalin-fixed paraffin-embedded samples and 21 reactive lesions.
View Article and Find Full Text PDFThe Hodgkin lymphoma (HL) genomic landscape is hardly known due to the scarcity of tumour cells in the tissue. Liquid biopsy employing circulating tumour DNA (ctDNA) can emerge as an alternative tool for non-invasive genotyping. By using a custom next generation sequencing (NGS) panel in combination with unique molecule identifiers, we aimed to identify somatic variants in the ctDNA of 60 HL at diagnosis.
View Article and Find Full Text PDFTelomeres are involved in processes like cellular growth, chromosomal stability, and proper segregation to daughter cells. Telomere length measured in leukocytes (LTL) has been investigated in different cancer types, including multiple myeloma (MM). However, LTL measurement is prone to heterogeneity due to sample handling and study design (retrospective vs.
View Article and Find Full Text PDFClonality analysis of immunoglobulin (IG) or T-cell receptor (TR) gene rearrangements is routine practice to assist diagnosis of lymphoid malignancies. Participation in external quality assessment (EQA) aids laboratories in identifying systematic shortcomings. The aim of this study was to evaluate laboratories' improvement in IG/TR analysis and interpretation during five EQA rounds between 2014 and 2018.
View Article and Find Full Text PDFWe evaluated the association between germline genetic variants located within the 3'-untranlsated region (polymorphic 3'UTR, ie, p3UTR) of candidate genes involved in multiple myeloma (MM). We performed a case-control study within the International Multiple Myeloma rESEarch (IMMEnSE) consortium, consisting of 3056 MM patients and 1960 controls recruited from eight countries. We selected p3UTR of six genes known to act in different pathways relevant in MM pathogenesis, namely KRAS (rs12587 and rs7973623), VEGFA (rs10434), SPP1 (rs1126772), IRF4 (rs12211228) and IL10 (rs3024496).
View Article and Find Full Text PDFDetecting persistent minimal residual disease (MRD) allows the identification of patients with an increased risk of relapse and death. In this study, we have evaluated MRD 3 months after transplantation in 106 myeloma patients using a commercial next-generation sequencing (NGS) strategy (LymphoTrack®), and compared the results with next-generation flow (NGF, EuroFlow). The use of different marrow pulls and the need of concentrating samples for NGS biased the applicability for MRD evaluation and favored NGF.
View Article and Find Full Text PDFRecommended genetic categorization of acute myeloid leukaemias (AML) includes a favourable-risk category, but not all these patients have good prognosis. Here, we used next-generation sequencing to evaluate the mutational profile of 166 low-risk AML patients: 30 core-binding factor (CBF)-AMLs, 33 nucleophosmin (NPM1)-AMLs, 4 biCEBPα-AMLs and 101 acute promyelocytic leukaemias (APLs). Functional categories of mutated genes differed among subgroups.
View Article and Find Full Text PDFMultiple myeloma is a heterogeneous disease whose pathogenesis has not been completely elucidated. Although B-cell receptors play a crucial role in myeloma pathogenesis, the impact of clonal immunoglobulin heavy-chain features in the outcome has not been extensively explored. Here we present the characterization of complete heavy-chain gene rearrangements in 413 myeloma patients treated in Spanish trials, including 113 patients characterized by next-generation sequencing.
View Article and Find Full Text PDFAcute myeloid leukemias (AMLs) are currently genomically characterized by karyotype, fluorescence in situ hybridization (FISH), real-time quantitative PCR, and DNA sequencing. Next-generation sequencing offers the promise of detecting all genomic lesions in a single run. However, technical limitations have hampered the detection of chromosomal rearrangements, so most studies are limited to somatic mutation assessment or require the use of RNA-based strategies.
View Article and Find Full Text PDFFollicular lymphoma (FL) is a heterogeneous disease whose pathogenesis remains partially unknown. Around 20% of FL patients experience early progression or treatment-refractory disease and 2-3% of patients per year experience histological transformation (HT) into a more aggressive lymphoma (tFL). Here, we evaluate the immunoglobulin heavy chain variable (IGHV) gene usage and mutational status in 187 FL cases to assess its impact on clinical outcome and histological transformation.
View Article and Find Full Text PDFIt is well known that activating mutations in the and genes are associated with poor response to anti-EGFR therapies in patients with metastatic colorectal cancer (mCRC). Approximately half of the patients with wild-type (WT) colorectal carcinoma do not respond to these therapies. This could be because the treatment decision is determined by the mutational profile of the primary tumor, regardless of the presence of small tumor subclones harboring RAS mutations in lymph nodes or liver metastases.
View Article and Find Full Text PDFThe prognostic impact of mutations and other -related and non-related genes such as and , on sporadic colorectal cancer (sCRC) remain controversial and/or have not been fully established. Here we investigated the frequency of such mutations in primary sCRC tumors and their impact on patient progression-free survival (PFS) and overall survival (OS). Primary tumor tissues from 87 sCRC patients were analysed using a custom-built next generation sequencing (NGS) panel to assess the hotspot mutated regions of (exons 2, 3 and 4), (exon 15) and (all exons).
View Article and Find Full Text PDF