Publications by authors named "Sarasija Hoare"

Tnk1/Kos1 is a non-receptor protein tyrosine kinase implicated in negative regulation of cell growth by a mechanism involving inhibition of Ras activation and requiring Tnk1/Kos1's intrinsic catalytic activity. Tnk1/Kos1 null mice were created by homologous recombination by deleting the catalytic domain. Upon aging, both Tnk1+/- and Tnk1-/- mice develop spontaneous tumors, including lymphomas and carcinomas at high rates (i.

View Article and Find Full Text PDF

Tnk1/Kos1 is a non-receptor protein tyrosine kinase found to be a tumor suppressor. It negatively regulates cell growth by indirectly suppressing Ras activity. We identified and characterized the critical cis-elements required for Tnk1/Kos1's promoter activity.

View Article and Find Full Text PDF

Tnk1/Kos1 is a non-receptor protein tyrosine kinase implicated in negatively regulating cell growth in a mechanism requiring its intrinsic catalytic activity. Tnk1/Kos1 null mice were created by homologous recombination by deleting the catalytic domain. Both Tnk1(+/-) and Tnk1(-/-) mice develop spontaneous tumors, including lymphomas and carcinomas, at high rates [27% (14 of 52) and 43% (12 of 28), respectively].

View Article and Find Full Text PDF

Relaxin, a hormone in the insulin superfamily, is synthesized by the corpus luteum of the rat ovary. Expression of relaxin precursor mRNA in rats is sharply induced after day 10 of pregnancy and plateaus on days 15 to 20 (parturition occurs on day 23). In an effort to understand this induction, we cloned the gene and carried out promoter analyses by transient transfection and chromatin immunoprecipitation methods.

View Article and Find Full Text PDF

Kinase of embryonic stem cells (Kos1), a nonreceptor protein tyrosine kinase (NRPTK), was identified and cloned from differentiating murine embryonic stem cells. Kos1 is localized on mouse chromosome 11 that corresponds to human chromosome 17p13.1 and is homologous to Tnk1, Ack1 and Ack2, making it a new member of the Ack family of NRPTKs.

View Article and Find Full Text PDF