Biotransformation of organic substrates via acidogenic fermentation (AF) to high-value products such as C1-C6 carboxylic acids and alcohol serves as platform chemicals for various industrial applications. However, the AF technology suffers from low product titers due to thermodynamic constraints. Recent studies suggest that augmenting AF redox potential can regulate the metabolic pathway and provide seamless electron flow by lowering the activation energy barrier, thus positively influencing the substrate utilization rate, product yield, and speciation.
View Article and Find Full Text PDFThis study systematically evaluated and compared different inoculum pretreatment methods to quickly select dark fermentative bacteria from anaerobic sludge for the bioconversion of food waste. The hydrogen (H) production rate was found to be highest for 'heat + CO' treated inoculum at 140.75 ± 2.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2022
A novel tubular sediment-water electrolytic fuel cell (SWEFC) was fabricated for the reduction of Cr(VI) in a dual-phase system. The approach simulates a standing water body with Cr(VI)-contaminated overlying water (electrolyte) and bottom sediment phase with electrodes placed in both the phases, supplemented with urea as a potential electron donor. Cr(VI) reduction efficiency of 93.
View Article and Find Full Text PDFThe present study demonstrates the potential utilization of urea/cow urine as anolyte for Cr(VI) reduction via a simple three-chambered electrolytic cell. The inherent chemical energy in the dual-waste stream (Cr(VI)-urea/urine) is employed for its self-oxidation-reduction without the need for any external energy supply. Ni foam as electroactive anode and catalyst-free carbon felt as cathode, along with the appropriate positioning of ion-selective separators, indirectly improved the cell performance by impeding electrolyte crossover.
View Article and Find Full Text PDF