Publications by authors named "Sarala J Pradhan"

Fragile X Syndrome (FXS) is the most common inherited form of intellectual disability and is caused by mutations in the gene encoding the Fragile X messenger ribonucleoprotein (FMRP). FMRP is an evolutionarily conserved and neuronally enriched RNA-binding protein (RBP) with functions in RNA editing, RNA transport, and protein translation. Specific target RNAs play critical roles in neurodevelopment, including the regulation of neurite morphogenesis, synaptic plasticity, and cognitive function.

View Article and Find Full Text PDF

The exonuclease torpedo Xrn2 loads onto nascent RNA 5'-PO ends and chases down pol II to promote termination downstream from polyA sites. We report that Xrn2 is recruited to preinitiation complexes and "travels" to 3' ends of genes. Mapping of 5'-PO ends in nascent RNA identified Xrn2 loading sites stabilized by an active site mutant, Xrn2(D235A).

View Article and Find Full Text PDF

During morphogenesis, cells communicate with each other to shape tissues and organs. Several lines of recent evidence indicate that ion channels play a key role in cellular signaling and tissue morphogenesis. However, little is known about the scope of specific ion-channel types that impinge upon developmental pathways.

View Article and Find Full Text PDF

Loss of embryonic ion channel function leads to morphological defects, but the underlying reason for these defects remains elusive. Here, we show that inwardly rectifying potassium (Irk) channels regulate release of the bone morphogenetic protein Dpp in the developing fly wing and that this is necessary for developmental signaling. Inhibition of Irk channels decreases the incidence of distinct Dpp-GFP release events above baseline fluorescence while leading to a broader distribution of Dpp-GFP.

View Article and Find Full Text PDF

It is widely accepted that long-term changes in synapse structure and function are mediated by rapid activity-dependent gene transcription and new protein synthesis. A growing amount of evidence suggests that the microRNA (miRNA) pathway plays an important role in coordinating these processes. Despite recent advances in this field, there remains a critical need to identify specific activity-regulated miRNAs as well as their key messenger RNA (mRNA) targets.

View Article and Find Full Text PDF

The temporal and spatial regulation of protein synthesis plays an important role in the control of neural physiology. In axons and dendrites, translationally repressed mRNAs are actively transported to their destinations in a variety of ribonucleoprotein particles (RNPs). A subset of these neuronal RNPs has been shown to contain proteins associated with mRNA processing bodies (P bodies).

View Article and Find Full Text PDF