Publications by authors named "Sarai Dery Folkestad"

Multilevel coupled cluster theory offers reduced scaling computation of intensive properties in systems that are too large for standard coupled cluster calculations. A significant benefit of the multilevel coupled cluster framework is the possibility of calculating intensive properties that are not tightly localized if an appropriate set of active orbitals is used. Correlated natural transition orbitals (CNTOs) are tailored to describe excitation processes.

View Article and Find Full Text PDF

The X-ray absorption spectra of aqueous ammonia and ammonium are computed using a combination of coupled cluster singles and doubles (CCSD) with different quantum mechanical and molecular mechanical embedding schemes. Specifically, we compare frozen Hartree-Fock (HF) density embedding, polarizable embedding (PE), and polarizable density embedding (PDE). Integrating CCSD with frozen HF density embedding is possible within the CC-in-HF framework, which circumvents the conventional system-size limitations of standard coupled cluster methods.

View Article and Find Full Text PDF

X-ray absorption (XA) spectroscopy is an essential experimental tool to investigate the local structure of liquid water. Interpretation of the experiment poses a significant challenge and requires a quantitative theoretical description. High-quality theoretical XA spectra require reliable molecular dynamics simulations and accurate electronic structure calculations.

View Article and Find Full Text PDF

We recently introduced the particle-breaking restricted Hartree-Fock (PBRHF) model, a mean-field approach to address the fractional charging of molecules when they interact with an electronic environment. In this paper, we present an extension of the model referred to as particle-breaking unrestricted Hartree-Fock (PBUHF). The unrestricted formulation contains odd-electron states necessary for a realistic description of fractional charging.

View Article and Find Full Text PDF

We present state-of-the-art calculations of the core-ionization spectrum of water. Despite significant progress in procedures developed to mitigate various experimental complications and uncertainties, the experimental determination of ionization energies of solvated species involves several non-trivial steps such as assessing the effect of the surface potential, electrolytes, and finite escape depths of photoelectrons. This provides a motivation to obtain robust theoretical values of the intrinsic bulk ionization energy and the corresponding solvent-induced shift.

View Article and Find Full Text PDF

The core-level electron excitation and ionization spectra of glycolaldehyde have been investigated by photoabsorption and photoemission spectroscopy at both carbon and oxygen -edges; the valence ionization spectra were also recorded by photoelectron spectroscopy in the UV-vis region. The spectra are interpreted by means of ab initio calculations based on the equation-of-motion coupled cluster singles and doubles (EOM-CCSD) and coupled cluster singles, doubles, and perturbative are in good agreement with the experimental results, and many of the observed features are assigned. The photoabsorption spectra are not only dominated by transitions from core-level orbitals to unoccupied π and σ orbitals but also show structures due to Rydberg transitions.

View Article and Find Full Text PDF

We extend the multilevel coupled cluster framework with triplet excitation energies at the singles and perturbative doubles (MLCC2) and singles and doubles (MLCCSD) levels of theory. In multilevel coupled cluster theory, we partition the orbitals and restrict the higher-order excitations in the cluster operator to a set of active orbitals. With an appropriate choice of these orbitals, the multilevel approach can give significant computational savings while maintaining the high accuracy of standard coupled cluster theory.

View Article and Find Full Text PDF

We present a novel framework for spin-adapted coupled cluster theory. The approach exploits the entanglement of an open-shell molecule with electrons in a non-interacting bath. Together, the molecule and the bath form a closed-shell system, and electron correlation can be included using the standard spin-adapted closed-shell coupled cluster formalism.

View Article and Find Full Text PDF

We present an implementation of a damped response framework for calculating resonant inelastic X-ray scattering (RIXS) at the equation-of-motion coupled-cluster singles and doubles (CCSD) and second-order approximate coupled-cluster singles and doubles (CC2) levels of theory in the open-source program . This framework lays the foundation for future extension to higher excitation methods (notably, the coupled-cluster singles and doubles with perturbative triples, CC3) and to multilevel approaches. Our implementation adopts a fully relaxed ground state and different variants of the core-valence separation projection technique to address convergence issues.

View Article and Find Full Text PDF

In this work we present the particle-breaking Hartree-Fock (PBHF) model which is a mean-field approach to open molecular systems. The interaction of a system with the environment is parametrized through a particle-breaking term in the molecular Hamiltonian. The PBHF wave function is constructed through an exponential unitary transformation of a Slater determinant with a given number of electrons.

View Article and Find Full Text PDF

We present an efficient implementation of the equation of motion oscillator strengths for the closed-shell multilevel coupled cluster singles and doubles with perturbative triples method (MLCC3) in the electronic structure program . The orbital space is split into an active part treated with CC3 and an inactive part computed at the coupled cluster singles and doubles (CCSD) level of theory. Asymptotically, the CC3 contribution scales as floating-point operations, where is the total number of virtual orbitals while and are the number of active virtual and occupied orbitals, respectively.

View Article and Find Full Text PDF

We present a trust-region optimization of the Edmiston-Ruedenberg orbital localization function. The approach is used to localize both the occupied and the virtual orbitals and is the first demonstration of general virtual orbital localization using the Edmiston-Ruedenberg localization function. In the Edmiston-Ruedenberg approach, the sum of the orbital self-repulsion energies is maximized to obtain the localized orbitals.

View Article and Find Full Text PDF

We present efficient implementations of the multilevel CC2 (MLCC2) and multilevel CCSD (MLCCSD) models. As the system size increases, MLCC2 and MLCCSD exhibit the scaling of the lower-level coupled cluster model. To treat large systems, we combine MLCC2 and MLCCSD with a reduced-space approach in which the multilevel coupled cluster calculation is performed in a significantly truncated molecular orbital basis.

View Article and Find Full Text PDF

We present an implementation of equation-of-motion oscillator strengths for the multilevel CCSD (MLCCSD) model where CCS is used as the lower level method (CCS/CCSD). In this model, the double excitations of the cluster operator are restricted to an active orbital space, whereas the single excitations are unrestricted. Calculated nitrogen K-edge spectra of adenosine, adenosine triphosphate (ATP), and an ATP-water system are used to demonstrate the performance of the model.

View Article and Find Full Text PDF

In the multilevel coupled cluster approach, an active orbital space is treated at a higher level of coupled cluster theory than the remaining inactive orbitals. We introduce the multilevel CC2 method where CC2 is used for the active orbital space. Furthermore, we present a simplified formulation of the multilevel CCSD method where CCSD is used for the active space.

View Article and Find Full Text PDF