Tropomyosin is an actin-binding protein that plays roles ranging from regulating muscle contraction to controlling cytokinesis and cell migration. The simple nematode provides a useful model for studying the core functions of tropomyosin in an animal, having a relatively simple anatomy, and a single tropomyosin gene, , that produces seven isoforms. Three higher molecular weight isoforms (LEV-11A, D, O) regulate contraction of body wall and other muscles, but comparatively less is known of the functions of four lower molecular weight isoforms (LEV-11C, E, T, U).
View Article and Find Full Text PDFCellular Src tyrosine kinase (c-Src) exists in the secretomes of several human cancers (extracellular, e-Src). Phosphoproteomics has demonstrated the existence of 114 potential extracellular e-Src substrates in addition to Tissue Inhibitor of Metalloproteinases 2. Here, we present a protocol to characterize secreted tyrosine-phosphorylated substrates as a result of c-Src expression and secretion.
View Article and Find Full Text PDFSecreted, or extracellular, heat shock protein 90 (eHsp90) is considered a recent discovery in eukaryotes. Over the last two decades, studies have provided significant supporting evidence that implicates eHsp90 both in normal cellular processes such as wound healing and in the development of human pathologies and diseases including fibrosis and cancer. In the early 2000s, Eustace et al.
View Article and Find Full Text PDFc-Src tyrosine kinase is a renowned key intracellular signaling molecule and a potential target for cancer therapy. Secreted c-Src is a recent observation, but how it contributes to extracellular phosphorylation remains elusive. Using a series of domain deletion mutants, we show that the N-proximal region of c-Src is essential for its secretion.
View Article and Find Full Text PDFThe molecular chaperone Heat Shock Protein-90 (Hsp90) is known to interact with over 300 client proteins as well as regulatory factors (eg. nucleotide and proteins) that facilitate execution of its role as a chaperone and, ultimately, client protein activation. Hsp90 associates transiently with these molecular modulators during an eventful chaperone cycle, resulting in acquisition of flexible structural conformations, perfectly customized to the needs of each one of its client proteins.
View Article and Find Full Text PDFThe striated body wall muscles of Caenorhabditis elegans are a simple model for sarcomere assembly. Previously, we observed deletion mutants for two formin genes, fhod-1 and cyk-1, develop thin muscles with abnormal dense bodies (the sarcomere Z-line analogs). However, this work left in question whether these formins work in a muscle cell autonomous manner, particularly since cyk-1(∆) deletion has pleiotropic effects on development.
View Article and Find Full Text PDFEpithelial cell-cell junctions have dual roles of accommodating morphological changes in an epithelium, while maintaining cohesion during those changes. An abundance of junction proteins has been identified, but many details on how intercellular junctions respond to morphological changes remain unclear. In Caenorhabditis elegans, the spermatheca is an epithelial sac that repeatedly dilates and constricts to allow ovulation.
View Article and Find Full Text PDFThe cytoskeleton is the basic machinery that drives many morphogenetic events. Elongation of the embryo from a spheroid into a long, thin larva initially results from actomyosin contractility, mainly in the lateral epidermal seam cells, while the corresponding dorsal and ventral epidermal cells play a more passive role. This is followed by a later elongation phase involving muscle contraction.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
December 2016
Formins are regulators of actin filament dynamics. We demonstrate here that two formins, FHOD-1 and EXC-6, are important in the nematode Caenorhabditis elegans for ovulation, during which actomyosin contractions push a maturing oocyte from the gonad arm into a distensible bag-like organ, the spermatheca. EXC-6, a homolog of the disease-associated mammalian formin INF2, is highly expressed in the spermatheca, where it localizes to cell-cell junctions and to circumferential actin filament bundles.
View Article and Find Full Text PDFeIF4E plays a conserved role in initiating protein synthesis, but with multiple eIF4E isoforms present in many organisms, these proteins also adopt specialized functions. Previous RNAi studies showed that ife-3, encoding the sole canonical eIF4E isoform of Caenorhabditis elegans, is essential for viability. Using ife-3 gene mutations, we show here that it is maternal ife-3 function that is essential for embryogenesis, but ife-3 null progeny of heterozygous animals are viable.
View Article and Find Full Text PDFMuscle contraction depends on interactions between actin and myosin filaments organized into sarcomeres, but the mechanism by which actin filaments incorporate into sarcomeres remains unclear. We have found that, during larval development in Caenorhabditis elegans, two members of the actin-assembling formin family, CYK-1 and FHOD-1, are present in striated body wall muscles near or on sarcomere Z lines, where barbed ends of actin filaments are anchored. Depletion of either formin during this period stunted growth of the striated contractile lattice, whereas their simultaneous reduction profoundly diminished lattice size and number of striations per muscle cell.
View Article and Find Full Text PDF