Publications by authors named "Sarah-Leigh Nicholson"

Aims: Application of advanced molecular pathology in rare tumours is hindered by low sample numbers, access to specialised expertise/technologies and tissue/assay QC and rapid reporting requirements. We assessed the feasibility of co-ordinated real-time centralised pathology review (CPR), encompassing molecular diagnostics and contemporary genomics (RNA-seq/DNA methylation-array).

Methods: This nationwide trial in medulloblastoma (<80 UK diagnoses/year) introduced a national reference centre (NRC) and assessed its performance and reporting to World Health Organisation standards.

View Article and Find Full Text PDF

Purpose: To improve stratification of risk-adapted treatment for non-metastatic (M0), standard-risk medulloblastoma patients by prospective evaluation of biomarkers of reported biological or prognostic significance, alongside clinico-pathological variables, within the multi-center HIT-SIOP-PNET4 trial.

Methods: Formalin-fixed paraffin-embedded tumor tissues were collected from 338 M0 patients (>4.0 years at diagnosis) for pathology review and assessment of the WNT subgroup (MBWNT) and genomic copy-number defects (chromosome 17, MYC/MYCN, 9q22 (PTCH1) and DNA ploidy).

View Article and Find Full Text PDF

We undertook a comprehensive clinical and biological investigation of serial medulloblastoma biopsies obtained at diagnosis and relapse. Combined MYC family amplifications and P53 pathway defects commonly emerged at relapse, and all patients in this group died of rapidly progressive disease postrelapse. To study this interaction, we investigated a transgenic model of MYCN-driven medulloblastoma and found spontaneous development of Trp53 inactivating mutations.

View Article and Find Full Text PDF

The MYC oncogenes are the most commonly amplified loci in medulloblastoma, and have previously been proposed as biomarkers of adverse disease prognosis by us and others. Here, we report focussed and comprehensive investigations of MYCC, MYCN and MYCL in an extensive medulloblastoma cohort (n = 292), aimed to define more precisely their biological significance and optimal clinical application to direct improved disease risk-stratification and individualisation of therapy. MYCC and MYCN expression elevations were multifactorial, associated with high-risk (gene amplification, large-cell/anaplastic pathology (LCA)) and favourable-risk (WNT/SHH molecular subgroups) disease features.

View Article and Find Full Text PDF

Medulloblastoma is heterogeneous, being characterized by molecular subgroups that demonstrate distinct gene expression profiles. Activation of the WNT or SHH signaling pathway characterizes two of these molecular subgroups, the former associated with low-risk disease and the latter potentially targeted by novel SHH pathway inhibitors. This manuscript reports the validation of a novel diagnostic immunohistochemical method to distinguish SHH, WNT, and non-SHH/WNT tumors and details their associations with clinical, pathological and cytogenetic variables.

View Article and Find Full Text PDF

Purpose: Medulloblastomas are heterogeneous and include relatively good-prognosis tumors characterized by Wnt pathway activation, as well as those that cannot be successfully treated with conventional therapy. Developing a practical therapeutic stratification that allows accurate identification of disease risk offers the potential to individualize adjuvant therapy and to minimize long-term adverse effects in a subgroup of survivors.

Methods: Using formalin-fixed paraffin-embedded (FFPE) tissue for immunohistochemistry, fluorescent in situ hybridization, and direct sequencing to identify tumors with a Wnt pathway signature and those harboring copy number abnormalities (CNAs) of potential prognostic significance (MYC/MYCN amplification, CNAs of chromosome 6 and 17), we evaluated clinical, pathologic, and molecular outcome indicators and stratification models in a cohort (n = 207) of patients with medulloblastoma 3 to 16 years of age from the International Society of Pediatric Oncology CNS9102 (PNET3) trial.

View Article and Find Full Text PDF