Vaccines are highly effective at preventing severe coronavirus disease (COVID-19). With mRNA vaccines, further research is needed to understand the association between immunogenicity and reactogenicity, which is defined as the physical manifestation of an inflammatory response to a vaccination. This study analyzed the immune response and reactogenicity in humans, post immunization, to the former SARS-CoV-2 mRNA investigational vaccine CVnCoV (CV-NCOV-001 and CV-NCOV-002 clinical trials).
View Article and Find Full Text PDFBackground: The COVID-19 vaccine candidate CVnCoV comprises sequence-optimized mRNA encoding SARS-CoV-2 S-protein encapsulated in lipid nanoparticles. In this phase 2a study, we assessed reactogenicity and immunogenicity of two or three doses in younger and older adults.
Methods: Younger (18-60 years) and older (>60 years) adults were enrolled in two sites in Panama and Peru to receive either 6 or 12 µg doses of CVnCoV or licensed control vaccines 28 days apart; subsets received a 12 µg booster dose on Day 57 or Day 180.
A third dose of CVnCoV, a former candidate mRNA vaccine against SARS-CoV-2, was previously shown to boost neutralizing antibody responses against SARS-CoV-2 wild-type in adults aged 18−60 and >60 years in a phase 2a clinical study. In the present study, we report the neutralizing antibody responses to a wild-type and a variant of concern, Delta, after a third dose of the vaccine on day (D)57 and D180. Neutralization activity was assessed using a microneutralization assay.
View Article and Find Full Text PDFImmune responses induced by currently licensed inactivated influenza vaccines are mainly directed against the hemagglutinin (HA) glycoprotein, the immunodominant antigen of influenza viruses. The resulting antigenic drift of HA requires frequent updating of the vaccine composition and annual revaccination. On the other hand, the levels of antibodies directed against the neuraminidase (NA) glycoprotein, the second major influenza virus antigen, vary greatly.
View Article and Find Full Text PDFTherapy resistance and tumor recurrence are often linked to a small refractory and highly tumorigenic subpopulation of neoplastic cells, known as cancer stem cells (CSCs). A putative marker of CSCs is CD133 (prominin-1). We have previously described a CD133-targeted oncolytic measles virus (MV-CD133) as a promising approach to specifically eliminate CD133-positive tumor cells.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) are an important target cell population for gene therapy since they can reconstitute the entire hematopoietic system. HSC-enriched cell populations can be recognized based on cell surface marker expression, such as CD34, which is broadly expressed on immature and partially differentiated cells. In mice, co-expression of CD34 and CD105 was previously shown to be relatively more specific for the most immature, long-term repopulating HSCs.
View Article and Find Full Text PDF