Publications by authors named "Sarah van Veen"

Polyamine homeostasis is disturbed in several human diseases, including cancer, which is hallmarked by increased intracellular polyamine levels and an upregulated polyamine transport system (PTS). Thus far, the polyamine transporters contributing to the elevated levels of polyamines in cancer cells have not yet been described, despite the fact that polyamine transport inhibitors are considered for cancer therapy. Here, we tested whether the upregulation of candidate polyamine transporters of the P5B transport ATPase family is responsible for the increased PTS in the well-studied breast cancer cell line MCF7 compared to the non-tumorigenic epithelial breast cell line MCF10A.

View Article and Find Full Text PDF

Polyamines (PAs) are physiologically relevant molecules that are ubiquitous in all organisms. The vitality of PAs to the healthy functioning of a cell is due to their polycationic nature causing them to interact with a vast plethora of cellular players and partake in numerous cellular pathways. Naturally, the homeostasis of such essential molecules is tightly regulated in a strictly controlled interplay between intracellular synthesis and degradation, uptake from and secretion to the extracellular compartment, as well as intracellular trafficking.

View Article and Find Full Text PDF

ATP13A2, a late endo-/lysosomal polyamine transporter, is implicated in a variety of neurodegenerative diseases, including Parkinson's disease and Kufor-Rakeb syndrome, an early-onset atypical form of parkinsonism. Loss-of-function mutations in ATP13A2 result in lysosomal deficiency as a consequence of impaired lysosomal export of the polyamines spermine/spermidine. Furthermore, accumulating evidence suggests the involvement of ATP13A2 in regulating the fate of α-synuclein, such as cytoplasmic accumulation and external release.

View Article and Find Full Text PDF

ATP13A2/PARK9 is a late endo-/lysosomal P5B transport ATPase that is associated with several neurodegenerative disorders. We recently characterized ATP13A2 as a lysosomal polyamine exporter, which sheds light on the molecular identity of the unknown mammalian polyamine transport system. Here, we describe step by step a protocol to measure radiolabeled polyamine transport in reconstituted vesicles from yeast cells overexpressing human ATP13A2.

View Article and Find Full Text PDF

Recessive loss-of-function mutations in () are associated with a spectrum of neurodegenerative disorders, including Parkinson's disease (PD). We recently revealed that the late endo-lysosomal transporter ATP13A2 pumps polyamines like spermine into the cytosol, whereas ATP13A2 dysfunction causes lysosomal polyamine accumulation and rupture. Here, we investigate how ATP13A2 provides protection against mitochondrial toxins such as rotenone, an environmental PD risk factor.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative brain disease presenting with a variety of motor and non-motor symptoms, loss of midbrain dopaminergic neurons in the substantia nigra pars compacta and the occurrence of α-synuclein-positive Lewy bodies in surviving neurons. Here, we performed whole exome sequencing in 52 early-onset PD patients and identified 3 carriers of compound heterozygous mutations in the ATP10B P4-type ATPase gene. Genetic screening of a Belgian PD and dementia with Lewy bodies (DLB) cohort identified 4 additional compound heterozygous mutation carriers (6/617 PD patients, 0.

View Article and Find Full Text PDF

ATP13A2 (PARK9) is a late endolysosomal transporter that is genetically implicated in a spectrum of neurodegenerative disorders, including Kufor-Rakeb syndrome-a parkinsonism with dementia-and early-onset Parkinson's disease. ATP13A2 offers protection against genetic and environmental risk factors of Parkinson's disease, whereas loss of ATP13A2 compromises lysosomes. However, the transport function of ATP13A2 in lysosomes remains unclear.

View Article and Find Full Text PDF

Several human P5-type transport ATPases are implicated in neurological disorders, but little is known about their physiological function and properties. Here, we investigated the relationship between the five mammalian P5 isoforms ATP13A1-5 in a comparative study. We demonstrated that ATP13A1-4 isoforms undergo autophosphorylation, which is a hallmark P-type ATPase property that is required for substrate transport.

View Article and Find Full Text PDF

Polyamines are essential for cell growth and differentiation, but their trafficking by the polyamine transport system is not fully understood. Herein, the synthesis of several azido-derivatized polyamines for easy conjugation by click chemistry is described. Attachment of a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dye gave fluorescent polyamine probes, which were tested in cell culture.

View Article and Find Full Text PDF

Hereditary spastic paraplegias are heterogeneous neurodegenerative disorders characterized by progressive spasticity of the lower limbs due to degeneration of the corticospinal motor neurons. In a Bulgarian family with three siblings affected by complicated hereditary spastic paraplegia, we performed whole exome sequencing and homozygosity mapping and identified a homozygous p.Thr512Ile (c.

View Article and Find Full Text PDF

The late endo-/lysosomal P-type ATPase ATP13A2 (PARK9) is implicated in Parkinson's disease (PD) and Kufor-Rakeb syndrome, early-onset atypical Parkinsonism. ATP13A2 interacts at the N-terminus with the signaling lipids phosphatidic acid (PA) and phosphatidylinositol (3,5) bisphosphate (PI(3,5)P2), which modulate ATP13A2 activity under cellular stress conditions. Here, we analyzed stable human SHSY5Y cell lines overexpressing wild-type (WT) or ATP13A2 mutants in which three N-terminal lipid binding sites (LBS1-3) were mutated.

View Article and Find Full Text PDF

ATP13A2 is a lysosomal P-type transport ATPase that has been implicated in Kufor-Rakeb syndrome and Parkinson's disease (PD), providing protection against α-synuclein, Mn(2+), and Zn(2+) toxicity in various model systems. So far, the molecular function and regulation of ATP13A2 remains undetermined. Here, we demonstrate that ATP13A2 contains a unique N-terminal hydrophobic extension that lies on the cytosolic membrane surface of the lysosome, where it interacts with the lysosomal signaling lipids phosphatidic acid (PA) and phosphatidylinositol(3,5)bisphosphate [PI(3,5)P2].

View Article and Find Full Text PDF

Mutations in ATP13A2 lead to Kufor-Rakeb syndrome, a parkinsonism with dementia. ATP13A2 belongs to the P-type transport ATPases, a large family of primary active transporters that exert vital cellular functions. However, the cellular function and transported substrate of ATP13A2 remain unknown.

View Article and Find Full Text PDF