Many discoveries in the life sciences have been made using material from living stock collections. These collections provide a uniform and stable supply of living organisms and related materials that enhance the reproducibility of research and minimize the need for repetitive calibration. While collections differ in many ways, they all require expertise in maintaining living organisms and good logistical systems for keeping track of stocks and fulfilling requests for specimens.
View Article and Find Full Text PDFJ Appl Anim Welf Sci
August 2017
The increasing debate and restrictions on primate research have prompted many surveys about their status. However, there is a lack of information regarding strepsirrhine primates in the literature. This study provides an overview of research on strepsirrhines in captivity by analyzing scientific articles published from 2010 to 2013 and assessing publicly available government reports in Europe and the United States.
View Article and Find Full Text PDFThe U.S. Culture Collection Network was formed in 2012 by a group of culture collection scientists and stakeholders in order to continue the progress established previously through efforts of an ad hoc group.
View Article and Find Full Text PDFSince its establishment in 1966, the Duke Lemur Center (DLC) has accumulated detailed records for nearly 4,200 individuals from over 40 strepsirrhine primate taxa-the lemurs, lorises, and galagos. Here we present verified data for 3,627 individuals of 27 taxa in the form of a life history table containing summarized species values for variables relating to ancestry, reproduction, longevity, and body mass, as well as the two raw data files containing direct and calculated variables from which this summary table is built. Large sample sizes, longitudinal data that in many cases span an animal's entire life, exact dates of events, and large numbers of individuals from closely related yet biologically diverse primate taxa make these datasets unique.
View Article and Find Full Text PDFComparative genomic studies in primates have yielded important insights into the evolutionary forces that shape genetic diversity and revealed the likely genetic basis for certain species-specific adaptations. To date, however, these studies have focused on only a small number of species. For the majority of nonhuman primates, including some of the most critically endangered, genome-level data are not yet available.
View Article and Find Full Text PDFThis study analyzed 76 species of Carnivora using a concatenated sequence of 6243 bp from six genes (nuclear TR-i-I, TBG, and IRBP; mitochondrial ND2, CYTB, and 12S rRNA), representing the most comprehensive sampling yet undertaken for reconstructing the phylogeny of this clade. Maximum parsimony and Bayesian methods were remarkably congruent in topologies observed and in nodal support measures. We recovered all of the higher level carnivoran clades that had been robustly supported in previous analyses (by analyses of morphological and molecular data), including the monophyly of Caniformia, Feliformia, Arctoidea, Pinnipedia, Musteloidea, Procyonidae + Mustelidae sensu stricto, and a clade of (Hyaenidae + (Herpestidae + Malagasy carnivorans)).
View Article and Find Full Text PDFThe Carnivora are one of only four orders of terrestrial mammals living in Madagascar today. All four (carnivorans, primates, rodents and lipotyphlan insectivores) are placental mammals with limited means for dispersal, yet they occur on a large island that has been surrounded by a formidable oceanic barrier for at least 88 million years, predating the age of origin for any of these groups. Even so, as many as four colonizations of Madagascar have been proposed for the Carnivora alone.
View Article and Find Full Text PDF