Publications by authors named "Sarah Withey"

Article Synopsis
  • Chronic adolescent cannabis use, specifically THC exposure, alters brain function and affects behavior, with potential long-lasting impacts into adulthood.
  • A study on squirrel monkeys showed significant changes in brain connectivity and reward processing after they were treated with THC during adolescence.
  • THC-treated monkeys displayed impaired motivation and reward sensitivity compared to those that received a vehicle, indicating persistent neurocognitive abnormalities linked to early cannabis use.
View Article and Find Full Text PDF

Naltrexone, an opioid antagonist that blocks the reinforcing properties of opioid agonists, is often prescribed to preclude relapse to opioid use disorder (OUD) following detoxification. However, few laboratory studies have directly investigated the ability of naltrexone to alter relapse-inducing effects of opioid agonists, including their priming strength in reinstatement studies and their impact in brain regions known to be involved in drug-induced reinforcement in MRI studies. Here we directly address this issue by investigating the effects of continuous exposure to naltrexone on 1) fentanyl-induced reinstatement of drug-seeking behavior, 2) fentanyl-induced patterns of blood oxygenation level dependent (BOLD) activation in the nucleus accumbens (NAcc), and 3) fentanyl-induced changes in NAcc functional connectivity (FC) in awake non-human primates that are engaged in ongoing opioid self-administration studies.

View Article and Find Full Text PDF

Resting-state networks (RSNs) are increasingly forwarded as candidate biomarkers for neuropsychiatric disorders. Such biomarkers may provide objective measures for evaluating novel therapeutic interventions in nonhuman primates often used in translational neuroimaging research. This study aimed to characterize the RSNs of awake squirrel monkeys and compare the characteristics of those networks in adolescent and adult subjects.

View Article and Find Full Text PDF

Earlier age of cannabis usage poses higher risk of Cannabis Use Disorder and adverse consequences, such as addiction, anxiety, dysphoria, psychosis, largely attributed to its principal psychoactive component, Δ9-tetrahydrocannabinol (THC) and altered dopaminergic function. As dopamine D1-D2 receptor heteromer activation causes anxiety and anhedonia, this signaling complex was postulated to contribute to THC-induced affective symptoms. To investigate this, we administered THC repeatedly to adolescent monkeys and adolescent or adult rats.

View Article and Find Full Text PDF

The failure of preclinical research to advance successful candidate medications in psychiatry has created a paradigmatic crisis in psychiatry. The Research Domain Criteria (RDoC) initiative was designed to remedy this situation with a neuroscience-based approach that employs multimodal and cross-species in vivo methodology to increase the probability of translational findings and, consequently, drug discovery. The present review underscores the feasibility of this methodological approach by briefly reviewing, first, the use of multidimensional and cross-species methodologies in traditional behavioral pharmacology and, subsequently, the utility of this approach in contemporary neuroimaging and electrophysiology research-with a focus on the value of functionally homologous studies in nonhuman and human subjects.

View Article and Find Full Text PDF

Opioid addiction is a chronic relapsing disorder in which drug-seeking behavior during abstinence can be provoked by exposure to a -opioid receptor (MOR) agonist or opioid-associated cues. Opioid self-administration behavior in laboratory subjects can be reinstated by priming with MOR agonists or agonist-related stimuli, providing a procedure suitable for relapse-related studies. The opioid antagonist naltrexone has been forwarded as a medication that can forestall relapse and, in an extended-release formulation, has demonstrated some treatment success.

View Article and Find Full Text PDF

Unlabelled: Resting state networks (RSNs) are increasingly forwarded as candidate biomarkers for neuropsychiatric disorders. Such biomarkers may provide objective measures for evaluating novel therapeutic interventions in nonhuman primates often used in translational neuroimaging research. This study aimed to characterize the RSNs of awake squirrel monkeys and compare the characteristics of those networks in adolescent and adult subjects.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) has been used to study the influence of opioids on neural circuitry implicated in opioid use disorder, such as the cortico-striatal-thalamo-cortical (CSTC) circuit. Given the increase in fentanyl-related deaths, this study was conducted to characterize the effects of fentanyl on patterns of brain activation in awake nonhuman primates. Four squirrel monkeys were acclimated to awake scanning procedures conducted at 9.

View Article and Find Full Text PDF

The efficient encapsulation of small molecule active ingredients has been a challenge for many decades across many commercial applications. Recently, successful attempts to address this issue have included deposition of thin metal shells onto liquid filled polymer microcapsules or emulsion droplets to provide an impermeable barrier to diffusion. In this work we have developed a novel method to protect small molecule active ingredients by deposition of thin mineral shells.

View Article and Find Full Text PDF

Background: Daily use of marijuana is rising in adolescents, along with consumption of high potency marijuana products (high % Δ-9-tetrahydrocannabinol or THC). These dual, related trends have opened gaps in understanding the long-term effects of daily consumption of a high dose of THC in adolescents and whether a therapeutic dose of cannabidiol (CBD) modulates THC effects.

Methods: Adolescent squirrel monkeys (Saimiri boliviensis) were treated daily for four months with vehicle (n = 4), a high THC dose (1 mg/kg i.

View Article and Find Full Text PDF

Investigations of the human germline and programming are challenging because of limited access to embryonic material. However, the pig as a model may provide insights into transcriptional network and epigenetic reprogramming applicable to both species. Here we show that, during the pre- and early migratory stages, pig primordial germ cells (PGCs) initiate large-scale epigenomic reprogramming, including DNA demethylation involving TET-mediated hydroxylation and, potentially, base excision repair (BER).

View Article and Find Full Text PDF

There is evidence that ATM mutated in ataxia-telangiectasia (A-T) plays a key role in protecting against mitochondrial dysfunction, the mechanism for which remains unresolved. We demonstrate here that ATM-deficient cells are exquisitely sensitive to nutrient deprivation, which can be explained by defective cross talk between the endoplasmic reticulum (ER) and the mitochondrion. Tethering between these two organelles in response to stress was reduced in cells lacking ATM, and consistent with this, Ca release and transfer between ER and mitochondria was reduced dramatically when compared with control cells.

View Article and Find Full Text PDF

How the genome activates or silences transcriptional programmes governs organ formation. Little is known in human embryos undermining our ability to benchmark the fidelity of stem cell differentiation or cell programming, or interpret the pathogenicity of noncoding variation. Here, we study histone modifications across thirteen tissues during human organogenesis.

View Article and Find Full Text PDF

(-)--Phenethyl analogs of optically pure -norhydromorphone were synthesized and pharmacologically evaluated in several in vitro assays (opioid receptor binding, stimulation of [S]GTPγS binding, forskolin-induced cAMP accumulation assay, and MOR-mediated β-arrestin recruitment assays). "Body" and "tail" interactions with opioid receptors (a subset of Portoghese's message-address theory) were used for molecular modeling and simulations, where the "address" can be considered the "body" of the hydromorphone molecule and the "message" delivered by the substituent (tail) on the aromatic ring of the -phenethyl moiety. One compound, N-p-chloro-phenethynorhydromorphone ((7aR,12bS)-3-(4-chlorophenethyl)-9-hydroxy-2,3,4,4a,5,6-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7(7aH)-one, ), was found to have nanomolar binding affinity at MOR and DOR.

View Article and Find Full Text PDF

The effective management of pain is a longstanding public health concern. Although opioids have been frontline analgesics for decades, they also have well-known undesirable effects that limit their clinical utility, such as abuse liability and respiratory depression. The failure to develop better analgesics has, in some ways, contributed to the escalating opioid epidemic that has claimed tens of thousands of lives and has cost hundreds of billions of dollars in health-care expenses.

View Article and Find Full Text PDF

Patients with ataxia-telangiectasia (A-T) lack a functional ATM kinase protein and exhibit defective repair of DNA double-stranded breaks and response to oxidative stress. We show that CRISPR/Cas9-assisted gene correction combined with piggyBac (PB) transposon-mediated excision of the selection cassette enables seamless restoration of functional ATM alleles in induced pluripotent stem cells from an A-T patient carrying compound heterozygous exonic missense/frameshift mutations, and from a patient with a homozygous splicing acceptor mutation of an internal coding exon. We show that the correction of one allele restores expression of ~ 50% of full-length ATM protein and ameliorates DNA damage-induced activation (auto-phosphorylation) of ATM and phosphorylation of its downstream targets, KAP-1 and H2AX.

View Article and Find Full Text PDF

Long-term cannabis users manifest deficits in dopaminergic functions, reflecting Δ-tetrahydrocannabinol (THC)-induced neuroadaptive dysfunctional dopamine signaling, similar to those observed upon dopamine D1-D2 heteromer activation. The molecular mechanisms remain largely unknown. We show evolutionary and regional differences in D1-D2 heteromer abundance in mammalian striatum.

View Article and Find Full Text PDF

Background: Prescription opioid abuse continues to be a public health concern of epidemic proportions. Notwithstanding the extensive literature regarding opioid action, there has been little systematic research regarding the effects of opioid dependence and withdrawal on aspects of cognition-related behavior in laboratory animals. The present studies examined the effects of the prescription opioid oxycodone on learning processes in nonhuman primates.

View Article and Find Full Text PDF

Nicotine can produce antinociception in preclinical pain models; however, the ability of nicotine to augment the antinociceptive effects of opioid agonists has not been investigated. The present experiments were conducted to determine how nicotine modifies the effects of opioid agonists differing in efficacy. Male squirrel monkeys responded for the delivery of milk under a fixed ratio 10 schedule of reinforcement.

View Article and Find Full Text PDF

Buprenorphine, a partial agonist at the -opioid receptor, is commonly prescribed for the management of opioid addiction. Notwithstanding buprenorphine's clinical popularity, the relationship between its effectiveness in attenuating relapse-related behavior and its opioid efficacy is poorly understood. Furthermore, changes in the antinociceptive potency or effectiveness of opioid drugs that might occur during buprenorphine treatment have not been characterized.

View Article and Find Full Text PDF

Esophageal adenocarcinoma (EAC) is one of the most frequent causes of cancer death, and yet compared to other common cancers, we know relatively little about the molecular composition of this tumor type. To further our understanding of this cancer, we have used open chromatin profiling to decipher the transcriptional regulatory networks that are operational in EAC. We have uncovered a transcription factor network that is usually found in primitive intestinal cells during embryonic development, centered on HNF4A and GATA6.

View Article and Find Full Text PDF

High-resolution molecular programmes delineating the cellular foundations of mammalian embryogenesis have emerged recently. Similar analysis of human embryos is limited to pre-implantation stages, since early post-implantation embryos are largely inaccessible. Notwithstanding, we previously suggested conserved principles of pig and human early development.

View Article and Find Full Text PDF

Evidence suggests that the 42, but not the 7, subtype of the nicotinic acetylcholine receptor (nAChR) plays a key role in mediating the behavioral effects of nicotine and related drugs. However, the importance of other nAChR subtypes remains unclear. The present studies were conducted to examine the involvement of nAChR subtypes by determining the effects of selected nicotinic agonists and antagonists in squirrel monkeys either 1) responding for food reinforcement or 2) discriminating the nicotinic agonist (+)-epibatidine (0.

View Article and Find Full Text PDF

Unlabelled: Although the clinical application of opioids for pain management is often hindered by undesired behavioral impairment, preclinical assays of antinociception typically do not provide information regarding the behaviorally disruptive effects of opioids that may accompany their antinociceptive effects. To address this, we modified a warm water tail withdrawal procedure to determine concurrently the effects of opioids on tail withdrawal latency (antinociception) and indices of food-maintained operant behavior (rates of responding and reinforcement density) in squirrel monkeys. Six opioid agonists were tested, and all produced dose-dependent antinociception and impairment of operant behavior.

View Article and Find Full Text PDF