The function of aquaporin (AQP) protein in transporting water is crucial for plants to survive in drought stress. With 47 homologues in tomato (Solanum lycopersicum) were reported, but the individual and integrated functions of aquaporins involved in drought response remains unclear. Here, three plasma membrane intrinsic protein genes, SlPIP2;1, SlPIP2;7 and SlPIP2;5, were identified as candidate aquaporins genes because of highly expressed in tomato roots.
View Article and Find Full Text PDFSeed germination is important for early plant morphogenesis as well as abiotic stress tolerance, and is mainly controlled by the phytohormones abscisic acid (ABA) and gibberellic acid (GA). Our previous studies identified a salt-tolerant tomato cultivar, LA2711, which is also a fast-germinating genotype, compared to its salt-sensitive counterpart, ZS-5. In an effort to further clarify the mechanism underlying this phenomenon, we compared the dynamic levels of ABA and GA4, the transcript abundance of genes involved in their biosynthesis and catabolism as well as signal transduction between the two cultivars.
View Article and Find Full Text PDFIn this study, the effect of melatonin on the postharvest ripening and quality improvement of tomato fruit was carried out. The tomatoes were immersed in exogenous melatonin for 2h, and then the related physiological indicators and the expression of genes during post-harvest life were evaluated. Compared with control check (CK), the 50 µM melatonin treatment significantly increased lycopene levels by 5.
View Article and Find Full Text PDFIn recent years melatonin has emerged as a research highlight in plant studies. Melatonin has different functions in many aspects of plant growth and development. The most frequently mentioned functions of melatonin are related to abiotic stresses such as drought, radiation, extreme temperature, and chemical stresses.
View Article and Find Full Text PDFAlthough previous studies have found that melatonin can promote seed germination, the mechanisms involved in perceiving and signaling melatonin remain poorly understood. In this study, it was found that melatonin was synthesized during cucumber seed germination with a peak in melatonin levels occurring 14 hr into germination. This is indicative of a correlation between melatonin synthesis and seed germination.
View Article and Find Full Text PDFMelatonin is a ubiquitous molecule and exists across kingdoms including plant species. Studies on melatonin in plants have mainly focused on its physiological influence on growth and development, and on its biosynthesis. Much less attention has been drawn to its affect on genome-wide gene expression.
View Article and Find Full Text PDFThe response and adaptation of plants to different environmental stresses are of great interest as they provide the key to understanding the mechanisms underlying stress tolerance. In this study, the changing patterns of four endogenous hormones and various physiological and biochemical parameters of both a salt-tolerant (LA2711) and a salt-sensitive (ZS-5) tomato cultivar were examined under salt stress and non-stress conditions. Additionally, the transcription of key genes in the abscisic acid (ABA) biosynthesis and metabolism were analyzed at different time points.
View Article and Find Full Text PDFA comprehensive investigation was carried out to determine the changes that occurred in water-stressed cucumber (Cucumis sativus L.) in response to melatonin treatment. We examined the potential roles of melatonin during seed germination and root generation and measured its effect on reactive oxygen species (ROS) levels, antioxidant enzyme activities, and photosynthesis.
View Article and Find Full Text PDFSalt tolerance in plants is a complex trait involving multiple mechanisms. Understanding these mechanisms and their regulation will assist in developing novel strategies to engineer salt-tolerant crops. In the current study, we investigated salt-tolerant mechanisms in soybean (Glycine max) cultivar WF-7 in comparison to salt-sensitive Union.
View Article and Find Full Text PDFThe soluble protein fraction of fully developed potato (Solanum tuberosum L.) tubers is dominated by patatin, a 40 kD storage glycoprotein, and protease inhibitors. Potato multicystatin (PMC) is a multidomain Cys-type protease inhibitor.
View Article and Find Full Text PDF