Publications by authors named "Sarah Waide"

Correction for 'Micropatterning neuronal networks' by Heike Hardelauf, et al., Analyst, 2014, 139, 3256-3264.

View Article and Find Full Text PDF

Microfluidic embodiments of the Campenot chamber have attracted great interest from the neuroscience community. These interconnected co-culture platforms can be used to investigate a variety of questions, spanning developmental and functional neurobiology to infection and disease propagation. However, conventional systems require significant cellular inputs (many thousands per compartment), inadequate for studying low abundance cells, such as primary dopaminergic substantia nigra, spiral ganglia, and Drosophilia melanogaster neurons, and impractical for high throughput experimentation.

View Article and Find Full Text PDF

Spatially organised neuronal networks have wide reaching applications, including fundamental research, toxicology testing, pharmaceutical screening and the realisation of neuronal implant interfaces. Despite the large number of methods catalogued in the literature there remains the need to identify a method that delivers high pattern compliance, long-term stability and is widely accessible to neuroscientists. In this comparative study, aminated (polylysine/polyornithine and aminosilanes) and cytophobic (poly(ethylene glycol) (PEG) and methylated) material contrasts were evaluated.

View Article and Find Full Text PDF

In this paper we present compartmentalized neuron arraying (CNA) microfluidic circuits for the preparation of neuronal networks using minimal cellular inputs (10-100-fold less than existing systems). The approach combines the benefits of microfluidics for precision single cell handling with biomaterial patterning for the long term maintenance of neuronal arrangements. A differential flow principle was used for cell metering and loading along linear arrays.

View Article and Find Full Text PDF