Publications by authors named "Sarah Vander Perre"

Background: Hypocholesterolemia hallmarks critical illness though the underlying pathophysiology is incompletely understood. As low circulating cholesterol levels could partly be due to an increased conversion to cortisol/corticosterone, we hypothesized that glucocorticoid treatment, via reduced de novo adrenal cortisol/corticosterone synthesis, might improve cholesterol availability and as such affect adrenal gland and skeletal muscle function.

Methods: In a matched set of prolonged critically ill patients (n = 324) included in the EPaNIC RCT, a secondary analysis was performed to assess the association between glucocorticoid treatment and plasma cholesterol from ICU admission to day five.

View Article and Find Full Text PDF

In septic mice, 3-hydroxybutyrate-sodium-salt has shown to partially prevent sepsis-induced muscle weakness. Although effective, the excessive sodium load was toxic. We here investigated whether ketone ester 3-hydroxybutyl-3-hydroxybutanoate (3HHB) was a safer alternative.

View Article and Find Full Text PDF

Background: Muscle weakness is a frequently occurring complication of sepsis, associated with increased morbidity and mortality. Interestingly, obesity attenuates sepsis-induced muscle wasting and weakness. As the adipokine leptin is strongly elevated in obesity and has been shown to affect muscle homeostasis in non-septic conditions, we aimed to investigate whether leptin mediates the protective effect of obesity on sepsis-induced muscle weakness.

View Article and Find Full Text PDF

Purpose: Withholding parenteral nutrition (PN) early in critical illness, late-PN, has shown to prevent infections despite a higher peak C-reactive protein (CRP). We investigated whether the accentuated CRP rise was caused by a systemic inflammatory effect mediated by cytokines or arose as a consequence of the different feeding regimens, and whether it related to improved outcome with late-PN.

Methods: This secondary analysis of the EPaNIC-RCT first investigated, with multivariable linear regression analyses, determinants of late-PN-induced CRP rise and its association with cytokine responses (IL-6, IL-10, TNF-α) in matched early-PN and late-PN patients requiring intensive care for ≥ 3 days.

View Article and Find Full Text PDF

Purpose: Sepsis is hallmarked by high plasma cortisol/corticosterone (CORT), low adrenocorticotropic hormone (ACTH), and high pro-opiomelanocortin (POMC). While corticotropin-releasing hormone-(CRH) and arginine-vasopressin (AVP)-driven pituitary POMC expression remains active, POMC processing into ACTH becomes impaired. Low ACTH is accompanied by loss of adrenocortical structure, although steroidogenic enzymes remain expressed.

View Article and Find Full Text PDF

Background: Recent evidence suggests a potentially protective effect of increasing ketone body availability via accepting low macronutrient intake early after onset of critical illness. The impact of blood glucose control with insulin on circulating ketones is unclear. Whereas lowering blood glucose may activate ketogenesis, high insulin concentrations may have the opposite effect.

View Article and Find Full Text PDF

Background: In septic mice, supplementing parenteral nutrition with 150 mg/day 3-hydroxybutyrate-sodium-salt (3HB-Na) has previously shown to prevent muscle weakness without obvious toxicity. The main objective of this study was to identify the toxic threshold of 3HB-Na supplementation in septic mice, prior to translation of this promising intervention to human use.

Methods: In a centrally-catheterized, antibiotic-treated, fluid-resuscitated, parenterally fed mouse model of prolonged sepsis, we compared with placebo the effects of stepwise escalating doses starting from 150 mg/day 3HB-Na on illness severity and mortality (n = 103).

View Article and Find Full Text PDF

Background: Muscle weakness is a complication of critical illness which hampers recovery. In critically ill mice, supplementation with the ketone body 3-hydroxybutyrate has been shown to improve muscle force and to normalize illness-induced hypocholesterolemia. We hypothesized that altered cholesterol homeostasis is involved in development of critical illness-induced muscle weakness and that this pathway can be affected by 3-hydroxybutyrate.

View Article and Find Full Text PDF

Background: Sepsis is typically hallmarked by high plasma (free) cortisol and suppressed cortisol breakdown, while plasma adrenocorticotropic hormone (ACTH) is not increased, referred to as 'ACTH-cortisol dissociation.' We hypothesized that sepsis acutely activates the hypothalamus to generate, via corticotropin-releasing hormone (CRH) and vasopressin (AVP), ACTH-induced hypercortisolemia. Thereafter, via increased availability of free cortisol, of which breakdown is reduced, feedback inhibition at the pituitary level interferes with normal processing of pro-opiomelanocortin (POMC) into ACTH, explaining the ACTH-cortisol dissociation.

View Article and Find Full Text PDF

Background: In critically ill children, omitting early use of parenteral nutrition (late-PN versus early-PN) reduced infections, accelerated weaning from mechanical ventilation, and shortened PICU stay. We hypothesized that fasting-induced ketogenesis mediates these benefits.

Methods: In a secondary analysis of the PEPaNIC RCT (N = 1440), the impact of late-PN versus early-PN on plasma 3-hydroxybutyrate (3HB), and on blood glucose, plasma insulin, and glucagon as key ketogenesis regulators, was determined for 96 matched patients staying ≥ 5 days in PICU, and the day of maximal 3HB-effect, if any, was identified.

View Article and Find Full Text PDF

Purpose: Increased systemic cortisol availability during adult critical illness is determined by reduced binding-proteins and suppressed breakdown rather than elevated ACTH. Dynamics, drivers and prognostic value of hypercortisolism during pediatric critical illness remain scarcely investigated.

Methods: This preplanned secondary analysis of the PEPaNIC-RCT (N = 1440), after excluding 420 children treated with corticosteroids before PICU-admission, documented (a) plasma ACTH, (free)cortisol and cortisol-metabolism at PICU-admission, day-3 and last PICU-day, their prognostic value, and impact of withholding early parenteral nutrition (PN), (b) the association between corticosteroid-treatment and these hormones, and (c) the association between corticosteroid-treatment and outcome.

View Article and Find Full Text PDF

Context: Changes in the GH axis during critical illness resemble fasting in healthy adults and contribute to hypercatabolism, which potentially affects outcome. Accepting macronutrient deficits by withholding parenteral nutrition (PN) during the first week in the intensive care unit (ICU; late PN) reduced complications and accelerated recovery as compared with early use of PN (early PN).

Objective: To investigate how late PN affects the GH axis in relation to its clinical outcome benefits.

View Article and Find Full Text PDF

Background: ICU-acquired weakness is a debilitating consequence of prolonged critical illness that is associated with poor outcome. Recently, premorbid obesity has been shown to protect against such illness-induced muscle wasting and weakness. Here, we hypothesized that this protection was due to increased lipid and ketone availability.

View Article and Find Full Text PDF

Introduction: Non-thyroidal illness (NTI), which occurs with fasting and in response to illness, is characterized by thyroid hormone inactivation with low triiodothyronine (T3) and high reverse T3 (rT3), followed by suppressed thyrotropin (TSH). Withholding supplemental parenteral nutrition early in pediatric critical illness (late-PN), thus accepting low/no macronutrient intake up to day 8 in the pediatric intensive care unit (PICU), accelerated recovery compared to initiating supplemental parenteral nutrition early (early-PN). Whether NTI is harmful or beneficial in pediatric critical illness and how it is affected by a macronutrient deficit remains unclear.

View Article and Find Full Text PDF

Purpose: Low plasma ACTH in critically ill patients may be explained by shock/inflammation-induced hypothalamus-pituitary damage or by feedback inhibition exerted by elevated plasma free cortisol. One can expect augmented/prolonged ACTH-responses to CRH injection with hypothalamic damage, immediately suppressed responses with pituitary damage, and delayed decreased responses in prolonged critical illness with feedback inhibition.

Methods: This randomized, double-blind, placebo-controlled crossover cohort study, compared ACTH responses to 100 µg IV CRH and placebo in 3 cohorts of 40 matched patients in the acute (ICU-day 3-6), subacute (ICU-day 7-16) or prolonged phase (ICU-day 17-28) of critical illness, with 20 demographically matched healthy subjects.

View Article and Find Full Text PDF

Purpose: For patients suffering from prolonged critical illness, it is unknown whether and when the hypothalamus-pituitary-adrenal axis alterations recover, and to what extent adrenocortical function parameters relate to sepsis/septic shock, to clinical need for glucocorticoid treatment, and to survival.

Methods: Patients still in ICU on day 7 (N = 392) and 20 matched healthy subjects were included. Morning blood and 24-h urine were collected daily and cosyntropin tests (250 µg) performed weekly, repeated 1 week after ICU discharge on the regular ward.

View Article and Find Full Text PDF

Sepsis is hallmarked by hypercortisolemia, a stress response essential for survival. This elevation in plasma cortisol is partially brought about by suppressed hepatic cortisol breakdown. We demonstrate that a controlled downregulation of the hepatic glucocorticoid receptor (hepatic GR) is crucial.

View Article and Find Full Text PDF

Background And Aims: Elevated markers of cholestasis are common in response to critical illness, and associated with adverse outcome. The role of illness duration and of nutrient restriction on underlying molecular pathways of such cholestatic responses have not been thoroughly investigated.

Methods: In a mouse model of surgery- and sepsis-induced critical illness, molecular pathways of cholestasis were investigated up to 7 days.

View Article and Find Full Text PDF

Rationale: Critical illness is hallmarked by muscle wasting and disturbances in glucose, lipid, and amino acid homeostasis. Circulating concentrations of glucagon, a catabolic hormone that affects these metabolic pathways, are elevated during critical illness. Insight in the nutritional regulation of glucagon and its metabolic role during critical illness is lacking.

View Article and Find Full Text PDF

Background: In prolonged non-obese critically ill patients, preservation of adipose tissue is prioritized over that of the skeletal muscle and coincides with increased adipogenesis. However, we recently demonstrated that in obese critically ill mice, this priority was switched. In the obese, the use of abundantly available adipose tissue-derived energy substrates was preferred and counteracted muscle wasting.

View Article and Find Full Text PDF

Background: The 'obesity paradox' of critical illness refers to better survival with a higher body mass index. We hypothesized that fat mobilized from excess adipose tissue during critical illness provides energy more efficiently than exogenous macronutrients and could prevent lean tissue wasting.

Methods: In lean and premorbidly obese mice, the effect of 5 days of sepsis-induced critical illness on body weight and composition, muscle wasting, and weakness was assessed, each with fasting and parenteral feeding.

View Article and Find Full Text PDF

Background: Critical illness is hallmarked by low circulating thyroxine (T4) and triiodothyronine (T3) concentrations, in the presence of elevated reverse T3 (rT3) and low-normal thyrotropin (TSH), referred to as nonthyroidal illness (NTI). Thyroid hormone (TH) metabolism is substantially increased during NTI, in part explained by enhanced deiodinase 3 (D3) activity. T4- and T3-sulfate concentrations are elevated, due to suppressed D1 activity in the presence of unaltered sulfotransferase activity, and 3,3'-diiodothyronine (3,3'-T2) concentrations are normal.

View Article and Find Full Text PDF

Background: Nutrition can affect the hypothalamus-pituitary-adrenal axis. We hypothesized that early administration of parenteral nutrition (PN) during critical illness reduces plasma ACTH and cortisol concentrations and thereby increases the use of corticosteroids.

Methods: This is a preplanned substudy of a randomized controlled trial (EPaNIC) that compared early PN with late PN in 4640 critically ill patients.

View Article and Find Full Text PDF

Context: Adrenal insufficiency is considered to be prevalent during critical illness, although the pathophysiology, diagnostic criteria, and optimal therapeutic strategy remain controversial. During critical illness, reduced cortisol breakdown contributes substantially to elevated plasma cortisol and low plasma ACTH concentrations.

Objective: Because ACTH has a trophic impact on the adrenal cortex, we hypothesized that with a longer duration of critical illness, subnormal ACTH adrenocortical stimulation predisposes to adrenal insufficiency.

View Article and Find Full Text PDF