Skeletal fracture resistance emerges from multiple components of bone structure like microarchitecture, matrix mineralization, and organization. These characteristics are engendered via mechanisms like the hypoxia-inducible factors (HIF) pathway, involving two paralogs, HIF-1α and HIF-2α. Under normoxia, HIF-α is targeted for degradation via von-Hippel Lindau (VHL); hypoxia enables HIF-α stabilization and induction of target genes.
View Article and Find Full Text PDFMolecular oxygen levels vary during development and disease. Adaptations to decreased oxygen bioavailability (hypoxia) are mediated by hypoxia-inducible factor (HIF) transcription factors. HIFs are composed of an oxygen-dependent α subunit (HIF-α), of which there are two transcriptionally active isoforms (HIF-1α and HIF-2α), and a constitutively expressed β subunit (HIFβ).
View Article and Find Full Text PDFHypoxia-inducible factors (HIFs) are oxygen-dependent heterodimeric transcription factors that mediate molecular responses to reductions in cellular oxygen (hypoxia). HIF signaling involves stable HIF-β subunits and labile, oxygen-sensitive HIF-α subunits. Under hypoxic conditions, the HIF-α subunit is stabilized, complexes with nucleus-confined HIF-β subunit, and transcriptionally regulates hypoxia-adaptive genes.
View Article and Find Full Text PDF