Publications by authors named "Sarah V Mendoza"

Skeletal fracture resistance emerges from multiple components of bone structure like microarchitecture, matrix mineralization, and organization. These characteristics are engendered via mechanisms like the hypoxia-inducible factors (HIF) pathway, involving two paralogs, HIF-1α and HIF-2α. Under normoxia, HIF-α is targeted for degradation via von-Hippel Lindau (VHL); hypoxia enables HIF-α stabilization and induction of target genes.

View Article and Find Full Text PDF

Molecular oxygen levels vary during development and disease. Adaptations to decreased oxygen bioavailability (hypoxia) are mediated by hypoxia-inducible factor (HIF) transcription factors. HIFs are composed of an oxygen-dependent α subunit (HIF-α), of which there are two transcriptionally active isoforms (HIF-1α and HIF-2α), and a constitutively expressed β subunit (HIFβ).

View Article and Find Full Text PDF

Hypoxia-inducible factors (HIFs) are oxygen-dependent heterodimeric transcription factors that mediate molecular responses to reductions in cellular oxygen (hypoxia). HIF signaling involves stable HIF-β subunits and labile, oxygen-sensitive HIF-α subunits. Under hypoxic conditions, the HIF-α subunit is stabilized, complexes with nucleus-confined HIF-β subunit, and transcriptionally regulates hypoxia-adaptive genes.

View Article and Find Full Text PDF