Publications by authors named "Sarah Thysen"

Abnormal Wnt signaling is associated with bone mass disorders. Frizzled-related protein (FRZB, also known as secreted frizzled-related protein-3 (SFRP3)) is a Wnt modulator that contains an amino-terminal cysteine-rich domain (CRD) and a carboxy-terminal Netrin-like (NTN) motif. Frzb(-/-) mice show increased cortical thickness.

View Article and Find Full Text PDF

To avoid malformation and disease, tissue development and homoeostasis are co-ordinated precisely in time and space. Secreted Frizzled-related protein 3 (sFRP3), encoded by the Frizzled-related protein gene (FRZB), acts as an antagonist of Wnt signalling in bone development by delaying the maturation of proliferative chondrocytes into hypertrophic chondrocytes. A disintegrin and metalloprotease 17 (ADAM17) is a transmembrane protease that is essential for developmental processes and promotes cartilage maturation into bone.

View Article and Find Full Text PDF

Osteoarthritis is a chronic degenerative disorder of the joint and represents one of the most common diseases worldwide. Its prevalence and severity are increasing owing to aging of the population, but treatment options remain largely limited to painkillers and anti-inflammatory drugs, which only provide symptomatic relief. In the late stages of the disease, surgical interventions are often necessary to partially restore joint function.

View Article and Find Full Text PDF

Introduction: The aim of this research was to study molecular changes in the articular cartilage and subchondral bone of the tibial plateau from mice deficient in frizzled-related protein (Frzb) compared to wild-type mice by transcriptome analysis.

Methods: Gene-expression analysis of the articular cartilage and subchondral bone of three wild-type and three Frzb-/- mice was performed by microarray. Data from three wild-type and two Frzb-/- samples could be used for pathway analysis of differentially expressed genes and were explored with PANTHER, DAVID and GSEA bioinformatics tools.

View Article and Find Full Text PDF