Publications by authors named "Sarah Strickler"

There is a current medical need for a dry powder aerosol delivery device that can be used to efficiently and consistently administer high dose therapeutics, such as inhaled antibiotics, surfactants and antivirals, to the lungs of infants. This study considered an infant air-jet dry powder inhaler (DPI) that could be actuated multiple times with minimal user interaction (i.e.

View Article and Find Full Text PDF

The objective of this study was to develop a new heated dryer system (HDS) for high efficiency lung delivery of nebulized aerosol and demonstrate performance with realistic in vitro testing for trans-nasal aerosol administration simultaneously with high-flow nasal cannula (HFNC) therapy and separately for direct oral inhalation (OI) of the aerosol. With the HDS-HFNC and HDS-OI platforms, new active synchronization control routines were developed to sense subject inhalation and coordinate drug aerosol delivery. In vitro experiments were conducted to predict regional drug loss and lung delivery efficiency in systems that included the HDS with various patient interfaces, realistic airway models, and simulated breathing waveforms.

View Article and Find Full Text PDF

The objective of this study was to characterize the effects of multiple nasal prong interface configurations on nasal depositional loss of pharmaceutical aerosols in a preterm infant nose-throat (NT) airway model. Benchmark in vitro experiments were performed in which a spray-dried powder formulation was delivered to a new preterm NT model with a positive-pressure infant air-jet dry powder inhaler using single- and dual-prong interfaces. These results were used to develop and validate a computational fluid dynamics (CFD) model of aerosol transport and deposition in the NT geometry.

View Article and Find Full Text PDF