Editors' note: The Ogawa-Yamanaka Stem Cell Prize recognizes groundbreaking work in translational regenerative medicine using reprogrammed cells. The prize is supported by Gladstone Institutes, in partnership with Cell Press. Winner of the 2024 Ogawa-Yamanaka Stem Cell Prize Rusty Gage made landmark discoveries that fundamentally shifted the field of neuroscience.
View Article and Find Full Text PDFInfected macrophages transition into aerobic glycolysis, a metabolic program crucial for control of bacterial infection. However, antimicrobial mechanisms supported by aerobic glycolysis are unclear. Methylglyoxal is a highly toxic aldehyde that modifies proteins and DNA and is produced as a side-product of glycolysis.
View Article and Find Full Text PDFIntroduction: X-linked retinoschisis (XLRS) is a vitreoretinal dystrophy caused by gene mutations which disrupt retinoschisin-1 (RS1) function. Vital for retinal architecture, the absence of functional RS1 leads to the development of intraretinal cysts. Intravitreal injection of a gene therapy for treating XLRS caused ocular inflammation in high dose groups in a phase I/II clinical trial.
View Article and Find Full Text PDFTherapeutic development for skeletal muscle diseases is challenged by a lack of ex vivo models that recapitulate human muscle physiology. Here, we engineered 3D human skeletal muscle tissue in the Biowire II platform that could be maintained and electrically stimulated long-term. Increasing differentiation time enhanced myotube formation, modulated myogenic gene expression, and increased twitch and tetanic forces.
View Article and Find Full Text PDFHere, we report a magnetogenetic system, based on a single anti-ferritin nanobody-TRPV1 receptor fusion protein, which regulated neuronal activity when exposed to magnetic fields. Adeno-associated virus (AAV)-mediated delivery of a floxed nanobody-TRPV1 into the striatum of adenosine-2a receptor-Cre drivers resulted in motor freezing when placed in a magnetic resonance imaging machine or adjacent to a transcranial magnetic stimulation device. Functional imaging and fiber photometry confirmed activation in response to magnetic fields.
View Article and Find Full Text PDFBackground: Oral fluid intake decreases in advanced cancer in the dying phase of illness. There is inadequate evidence to support the assessment, and management, of hydration in the dying. Bioelectrical impedance analysis (BIA) is a body composition assessment tool.
View Article and Find Full Text PDFIn April 2023, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), in partnership with the National Institute of Child Health and Human Development, the National Institute on Aging, and the Office of Behavioral and Social Sciences Research, hosted a 2-day online workshop to discuss neural plasticity in energy homeostasis and obesity. The goal was to provide a broad view of current knowledge while identifying research questions and challenges regarding neural systems that control food intake and energy balance. This review includes highlights from the meeting and is intended both to introduce unfamiliar audiences with concepts central to energy homeostasis, feeding, and obesity and to highlight up-and-coming research in these areas that may be of special interest to those with a background in these fields.
View Article and Find Full Text PDFFive hundred thirty-seven million people globally suffer from diabetes. Insulin-producing β cells are reduced in number in most people with diabetes, but most individuals still have some residual β cells. However, none of the many diabetes drugs in common use increases human β cell numbers.
View Article and Find Full Text PDFMagnetogenetics represents a method for remote control of cellular function. Previous work suggests that generation of reactive oxygen species (ROS) initiates downstream signaling. Herein, a chemical biology approach was used to elucidate further the mechanism of radio frequency-alternating magnetic field (RF-AMF) stimulation of a TRPV1-ferritin magnetogenetics platform that leads to Ca flux.
View Article and Find Full Text PDFPurpose: X-linked retinoschisis (XLRS), due to loss-of-function mutations in the retinoschisin () gene, is characterized by a modest to severe decrease in visual acuity. Clinical trials for XLRS utilizing intravitreal (IVT) gene therapy showed ocular inflammation. We conducted a subretinal dose-response preclinical study using rAAV2tYF-CB-h utilizing the knockout (-KO) mouse to investigate short- and long-term retinal rescue after subretinal gene delivery.
View Article and Find Full Text PDFBackground: Developments in digital health have the potential to create new opportunities for healthcare professionals support delivery of palliative care. Globally, many palliative care professionals used digital health innovations to support communication with staff, patients and caregivers, during COVID-19 pandemic. However, there is limited data about the views of palliative care professionals of using digital health to support communication during the pandemic.
View Article and Find Full Text PDFEditors' note: The Ogawa-Yamanaka Stem Cell Prize recognizes groundbreaking work in translational regenerative medicine using reprogrammed cells. The prize is supported by Gladstone Institutes, in partnership with Cell Press. Magdalena Zernicka-Goetz, recipient of the 2023 Ogawa-Yamanaka Stem Cell Prize, has created self-assembling embryo-like models that are advancing regenerative medicine.
View Article and Find Full Text PDFThe ability to precisely control the activity of defined cell populations enables studies of their physiological roles and may provide therapeutic applications. While prior studies have shown that magnetic activation of ferritin-tagged ion channels allows cell-specific modulation of cellular activity, the large size of the constructs made the use of adeno-associated virus, AAV, the vector of choice for gene therapy, impractical. In addition, simple means for generating magnetic fields of sufficient strength have been lacking.
View Article and Find Full Text PDFUnlabelled: The (rs671) allele is one of the most common genetic mutations in humans, yet the positive evolutionary selective pressure to maintain this mutation is unknown, despite its association with adverse health outcomes. ALDH2 is responsible for the detoxification of metabolically produced aldehydes, including lipid-peroxidation end products derived from inflammation. Here, we demonstrate that host-derived aldehydes 4-hydroxynonenal (4HNE), malondialdehyde (MDA), and formaldehyde (FA), all of which are metabolized by ALDH2, are directly toxic to the bacterial pathogens and at physiological levels.
View Article and Find Full Text PDFBackground: Digital legacy refers to the online content available about someone following their death. This may include social media profiles, photos, blogs or gaming profiles. Some patients may find it comforting that their digital content remains online, and those bereaved may view it as a way to continue bonds with the deceased person.
View Article and Find Full Text PDFHere we report a novel suite of magnetogenetic tools, based on a single anti-ferritin nanobody-TRPV1 receptor fusion protein, which regulated neuronal activity when exposed to magnetic fields. AAV-mediated delivery of a floxed nanobody-TRPV1 into the striatum of adenosine 2a receptor-cre driver mice resulted in motor freezing when placed in an MRI or adjacent to a transcranial magnetic stimulation (TMS) device. Functional imaging and fiber photometry both confirmed activation of the target region in response to the magnetic fields.
View Article and Find Full Text PDFMacrophages employ an array of pattern recognition receptors to detect and eliminate intracellular pathogens that access the cytosol. The cytosolic carbohydrate sensors Galectin-3, -8, and -9 (Gal-3, Gal-8, and Gal-9) recognize damaged pathogen-containing phagosomes, and Gal-3 and Gal-8 are reported to restrict bacterial growth via autophagy in cultured cells. However, the contribution of these galectins to host resistance during bacterial infection in vivo remains unclear.
View Article and Find Full Text PDFMycobacterium abscessus () is an emerging nontuberculosis mycobacterial (NTM) pathogen responsible for a wide variety of respiratory and cutaneous infections that are difficult to treat with standard antibacterial therapy. has a high degree of both innate and acquired antibiotic resistance to most clinically relevant drugs, including standard anti-mycobacterial agents. Ethionamide (ETH), an inhibitor of mycolic acid biosynthesis, is currently utilized as a second-line agent for treating multidrug-resistant tuberculosis infections.
View Article and Find Full Text PDF