Acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL-2, creating a therapeutic opportunity to target LSCs using the BCL-2 inhibitor venetoclax. Although venetoclax-based regimens have shown promising clinical activity, the emergence of drug resistance is prevalent.
View Article and Find Full Text PDFWe previously reported that acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL2, creating a therapeutic opportunity to target LSCs using the BCL2 inhibitor drug venetoclax. While venetoclax-based regimens have indeed shown promising clinical activity, the emergence of drug resistance is prevalent.
View Article and Find Full Text PDFUnlabelled: The BCL2 inhibitor venetoclax has recently emerged as an important component of acute myeloid leukemia (AML) therapy. Notably, use of this agent has revealed a previously unrecognized form of pathogenesis characterized by monocytic disease progression. We demonstrate that this form of disease arises from a fundamentally different type of leukemia stem cell (LSC), which we designate as monocytic LSC (m-LSC), that is developmentally and clinically distinct from the more well-described primitive LSC (p-LSC).
View Article and Find Full Text PDFPurpose: There are currently limited objective criteria to help assist physicians in determining whether an individual patient with acute myeloid leukemia (AML) is likely to do better with induction with either standard 7 + 3 chemotherapy or targeted therapy with venetoclax plus azacitidine. The study goal was to address this need by developing exploratory clinical decision support methods.
Patients And Methods: Univariable and multivariable analysis as well as comparison of a range of machine learning (ML) predictors were performed using cohorts of 120 newly diagnosed 7 + 3-treated AML patients compared with 101 venetoclax plus azacitidine-treated patients.
Surveillance monitoring for microbial water quality typically involves collecting single discrete grab samples for analyzing only one contaminant. While informative, current approaches suffer from poor recoveries and only provide a limited snapshot of the microbial contaminants only at the time of collection. To overcome these limitations, bivalves have been proposed as effective biosentinels of water quality particularly for their ability to efficiently concentrate and retain microbial contaminants for long periods of time.
View Article and Find Full Text PDFQuantitative real-time polymerase chain reaction (qPCR) assays to detect Cryptosporidium oocysts in clinical samples are increasingly being used to diagnose human cryptosporidiosis, but a parallel approach for detecting and identifying Cryptosporidium oocyst contamination in surface water sources has yet to be established for current drinking water quality monitoring practices. It has been proposed that Cryptosporidium qPCR-based assays could be used as viable alternatives to current microscopic-based detection methods to quantify levels of oocysts in drinking water sources; however, data on specificity, analytical sensitivity, and the ability to accurately quantify low levels of oocysts are limited. The purpose of this study was to provide a comprehensive evaluation of TaqMan-based qPCR assays, which were developed for either clinical or environmental investigations, for detecting Cryptosporidium oocyst contamination in water.
View Article and Find Full Text PDFCryptosporidium spp. and Toxoplasma gondii are important coccidian parasites that have caused waterborne and foodborne disease outbreaks worldwide. Techniques like subtractive hybridization, microarrays, and quantitative reverse transcriptase real-time polymerase chain reaction (RT-qPCR) assays have been used to understand the roles of specific genes in regulating life stage development and pathogenesis of these parasites.
View Article and Find Full Text PDFToxoplasma gondii is an obligate intracellular protozoan pathogen that commonly infects humans. It is a well characterized apicomplexan associated with causing food- and water-borne disease outbreaks. The definitive host is the feline species where sexual replication occurs resulting in the development of the highly infectious and environmentally resistant oocyst.
View Article and Find Full Text PDFThe recently synthesized polyurea-nanoencapsulated surfactant-templated aerogels (X-aerogels) are porous materials with significantly improved mechanical strengths. Surface-wise they resemble polyurethane, a common biocompatible material, but their biocompatibility has never been investigated. As lightweight and strong materials, if X-aerogels also have acceptable biocompatibility, they may be used in many implantable devices.
View Article and Find Full Text PDFMultiple myeloma is an incurable plasma cell malignancy for which existing animal models are limited. We have previously shown that the targeted expression of the transgenes c-Myc and Bcl-X(L) in murine plasma cells produces malignancy that displays features of human myeloma, such as localization of tumor cells to the bone marrow and lytic bone lesions. We have isolated and characterized in vitro cultures and adoptive transfers of tumors from Bcl-xl/Myc transgenic mice.
View Article and Find Full Text PDFIkaros is a transcriptional regulator whose function is essential for B cell development. It is expressed in the hematopoietic stem cell (HSC) through the mature B cell stage. Using genetically engineered mice in which the endogenous Ikaros gene is disrupted, it has been shown that a lack of Ikaros leads to a block in B cell development and that its severe diminution results in a hyperresponsive B cell compartment.
View Article and Find Full Text PDF