Publications by authors named "Sarah Squire"

We describe the first examples of breast capsular contracture amelioration using a non-surgical, transdermal treatment with platelet-rich plasma. The treated patients did not experience any complications or significant pain. This report illustrates the potential of a non-invasive treatment option for a common complication of breast augmentation.

View Article and Find Full Text PDF

Background: At the onset of the COVID-19 pandemic, elective surgical provision was severely affected by the need for hospital reorganization to care for critically ill patients. In response, National Health Service (NHS) England issued national guidance proposing acceptable time intervals for postponing different types of surgical procedure. This study reports healthcare professionals' private accounts of the strategies adopted to manage the imbalance of demand and resource, using colorectal cancer surgery as a case study.

View Article and Find Full Text PDF

Objectives: People with eating disorders, as well as their caregivers, experience high symptom burden, reduced quality of life and increased risk of early mortality. A lack of resources, disjointed vision and limited uptake of the evidence have limited the translation and implementation of research into practice. Little is known about what stakeholders (people with a lived experience, caregivers, health care professionals, researchers and policymakers) see as the most important research priorities.

View Article and Find Full Text PDF

A therapeutic approach that holds the potential to treat all Duchenne muscular dystrophy (DMD) patient populations is utrophin modulation. Ezutromid, a first generation utrophin modulator which was later found to act via antagonism of the arylhydrocarbon receptor, progressed to Phase 2 clinical trials. Although interim data showed target engagement and functional improvements, ezutromid ultimately failed to meet its clinical endpoints.

View Article and Find Full Text PDF

Duchenne muscular dystrophy is a fatal disease with no cure, caused by lack of the cytoskeletal protein dystrophin. Upregulation of utrophin, a dystrophin paralogue, offers a potential therapy independent of mutation type. The failure of first-in-class utrophin modulator ezutromid/SMT C1100 in Phase II clinical trials necessitates development of compounds with better efficacy, physicochemical and ADME properties and/or complementary mechanisms.

View Article and Find Full Text PDF

Objective: To extend the IDEAL framework for device innovation, IDEAL-D, to include the preclinical stage of development (stage 0).

Background: In previous work, the IDEAL collaboration has proposed frameworks for new surgical techniques and complex therapeutic technologies, the central tenet being that development and evaluation can and should proceed together in an ordered and logical manner that balances innovation and safety.

Methods: Following agreement at the IDEAL Collaboration Council, a multidisciplinary working group was formed comprising 12 representatives from healthcare, academia, industry, and a patient advocate.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to explore sexual function and practices after colorectal surgery, addressing questions that matter to patients and their partners through a survey.
  • An anonymous online survey was conducted, gathering responses from 632 individuals, primarily women, highlighting various experiences and changes in sexual preferences post-surgery.
  • Results indicated significant impacts on sexual activities and body confidence after surgery, with many patients not receiving any sexual health advice from healthcare professionals, showing a need for better communication on this topic.
View Article and Find Full Text PDF

Utrophin modulation is a disease-modifying therapeutic strategy for Duchenne muscular dystrophy that would be applicable to all patient populations. To improve the suboptimal profile of ezutromid, the first-in-class clinical candidate, a second generation of utrophin modulators bearing a phosphinate ester moiety was developed. This modification significantly improved the physicochemical and ADME properties, but one of the main lead molecules was found to have dose-limiting hepatotoxicity.

View Article and Find Full Text PDF

Following on from ezutromid, the first-in-class benzoxazole utrophin modulator that progressed to Phase 2 clinical trials for the treatment of Duchenne muscular dystrophy, a new chemotype was designed to optimise its physicochemical and ADME profile. Herein we report the synthesis of SMT022357, a second generation utrophin modulator preclinical candidate, and an asymmetric synthesis of its constituent enantiomers. The pharmacological properties of both enantiomers were evaluated and .

View Article and Find Full Text PDF

Genetic approaches for the diagnosis and treatment of inherited muscle diseases have advanced rapidly in recent years. Many of the advances have occurred in the treatment of Duchenne muscular dystrophy (DMD), a muscle wasting disease where affected boys are typically wheelchair bound by age 12 years and generally die in their twenties from respiratory failure or cardiomyopathy. Dystrophin is a 421 kD protein which links F-actin to the extracellular matrix via the dystrophin-associated protein complex (DAPC) at the muscle membrane.

View Article and Find Full Text PDF

Utrophin modulation is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD), which should be applicable to all patient populations. Following on from ezutromid, the first-generation utrophin modulator, we describe the development of a second generation of utrophin modulators, based on the bioisosteric replacement of the sulfone group with a phosphinate ester and substitution of the metabolically labile naphthalene with a haloaryl substituent. The improved physicochemical and absorption, distribution, metabolism, and excretion (ADME) properties, further reflected in the enhanced pharmacokinetic profile of the most advanced compounds, and , led to significantly better exposure compared to ezutromid and alleviation of the dystrophic phenotype in mice.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease arising from mutations in the dystrophin gene. Upregulation of utrophin to compensate for the missing dystrophin offers a potential therapy independent of patient genotype. The first-in-class utrophin modulator ezutromid/SMT C1100 was developed from a phenotypic screen through to a Phase 2 clinical trial.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a lethal neuromuscular disorder caused by loss of dystrophin. Several therapeutic modalities are currently in clinical trials but none will achieve maximum functional rescue and full disease correction. Therefore, we explored the potential of combining the benefits of dystrophin with increases of utrophin, an autosomal paralogue of dystrophin.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is an X-linked muscle-wasting disease caused by mutations in the dystrophin gene. DMD boys are wheelchair-bound around 12 years and generally survive into their twenties. There is currently no effective treatment except palliative care, although personalized treatments such as exon skipping, stop codon read-through, and viral-based gene therapies are making progress.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a lethal, X-linked muscle-wasting disease caused by lack of the cytoskeletal protein dystrophin. Constitutive utrophin expression, a structural and functional paralogue of dystrophin, can successfully prevent the dystrophic pathology in the dystrophin-deficient mdx mouse model. In dystrophic muscles, utrophin is increased as part of the repair process and localized at the sarcolemma of regenerating myofibers.

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is a lethal X-linked muscle wasting disorder caused by the absence of dystrophin, a large cytoskeletal muscle protein. Increasing the levels of the dystrophin-related-protein utrophin is a highly promising therapy for DMD and has been shown to improve pathology in dystrophin-deficient mice. One contributing factor to muscle wasting in DMD is mitochondrial pathology that contributes to oxidative stress and propagates muscle damage.

View Article and Find Full Text PDF

Despite promising therapeutic avenues, there is currently no effective treatment for Duchenne muscular dystrophy (DMD), a lethal monogenic disorder caused by the loss of the large cytoskeletal protein, dystrophin. A highly promising approach to therapy, applicable to all DMD patients irrespective to their genetic defect, is to modulate utrophin, a functional paralogue of dystrophin, able to compensate for the primary defects of DMD restoring sarcolemmal stability. One of the major difficulties in assessing the effectiveness of therapeutic strategies is to define appropriate outcome measures.

View Article and Find Full Text PDF

Purpose: Head and neck (HN) radiation therapy patients are typically immobilized with closed thermoplastic masks that cover the face and may cause discomfort. In this work, we examine the use of open masks for HN radiation therapy.

Methods And Materials: Fifty HN patients were prospectively randomized into 2 groups (25 closed masks, 25 open masks).

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a lethal, X-linked muscle-wasting disease caused by lack of the cytoskeletal protein dystrophin. There is currently no cure for DMD although various promising approaches are progressing through human clinical trials. By pharmacologically modulating the expression of the dystrophin-related protein utrophin, we have previously demonstrated in dystrophin-deficient mdx studies, daily SMT C1100 treatment significantly reduced muscle degeneration leading to improved muscle function.

View Article and Find Full Text PDF

Background: Intracranial neoplasms can cause pain similar to trigeminal neuralgia. Literature regarding radiosurgery for this is limited. We present a retrospective review of patients with tumor-related facial pain from benign lesions treated with gamma knife radiosurgery (GKRS) at Wake Forest University.

View Article and Find Full Text PDF

Mutations in the skeletal muscle α-actin gene (ACTA1) cause congenital myopathies including nemaline myopathy, actin aggregate myopathy and rod-core disease. The majority of patients with ACTA1 mutations have severe hypotonia and do not survive beyond the age of one. A transgenic mouse model was generated expressing an autosomal dominant mutant (D286G) of ACTA1 (identified in a severe nemaline myopathy patient) fused with EGFP.

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is a lethal, progressive muscle wasting disease caused by a loss of sarcolemmal bound dystrophin, which results in the death of the muscle fibers leading to the gradual depletion of skeletal muscle. There is significant evidence demonstrating that increasing levels of the dystrophin-related protein, utrophin, in mouse models results in sarcolemmal bound utrophin and prevents the muscular dystrophy pathology. The aim of this work was to develop a small molecule which increases the levels of utrophin in muscle and thus has therapeutic potential.

View Article and Find Full Text PDF

Purpose: To investigate the efficacy of 3.0-T magnetic resonance imaging (MRI) for detecting brain metastases for stereotactic radiosurgery (SRS) planning.

Methods And Materials: All adult patients scheduled for SRS treatment for brain metastases at our institution between October 2005 and January 2008 were eligible for analysis.

View Article and Find Full Text PDF

To report long-term results for children with low-grade hypothalamic/chiasmatic gliomas treated on a phase II chemotherapy protocol. Between 1984 and 1992, 33 children with hypothalamic/chiasmatic LGGs received TPDCV chemotherapy on a phase II prospective trial. Median age was 3.

View Article and Find Full Text PDF

Skeletal muscle alpha-actin (ACTA1) is the major actin in postnatal skeletal muscle. Mutations of ACTA1 cause mostly fatal congenital myopathies. Cardiac alpha-actin (ACTC) is the major striated actin in adult heart and fetal skeletal muscle.

View Article and Find Full Text PDF