Publications by authors named "Sarah Shefer"

Cerebrotendinous xanthomatosis (CTX), sterol 27-hydroxylase (CYP27A1) deficiency, is associated with markedly reduced chenodeoxycholic acid (CDCA), the most powerful activating ligand for farnesoid X receptor (FXR). We investigated the effects of reduced CDCA on FXR target genes in humans. Liver specimens from an untreated CTX patient and 10 control subjects were studied.

View Article and Find Full Text PDF

Background And Aims: Plant sterols are widely distributed in human diet but are poorly absorbed so that their plasma levels are very low. However, when fed in large amounts, they lower plasma cholesterol levels by interfering with cholesterol absorption. We have studied the effect of 4 weeks of feeding a chow diet supplemented with 1% plant sterols [brassicasterol (6.

View Article and Find Full Text PDF

The CYP27A gene encodes a mitochondrial cytochrome P450 enzyme, sterol 27-hydroxylase, that is expressed in many different tissues and plays an important role in cholesterol and bile acid metabolism. In humans, CYP27A deficiency leads to cerebrotendinous xanthomatosis. To gain insight into the roles of CYP27A in the regulation of cholesterol and bile acid metabolism, cyp27A gene knockout heterozygous, homozygous, and wild-type littermate mice were studied.

View Article and Find Full Text PDF

We investigated the effect of SC-435, a competitive inhibitor of ileal apical sodium-dependent bile acid cotransporter (ASBT) on ileal bile acid absorption and the hepatic nuclear receptor FXR (farnesoid X receptor), which regulates cholesterol 7 alpha-hydroxylase (CYP7A1) activity and mRNA levels. Eighteen New Zealand White (NZW) rabbits were divided into 2 groups: controls (n = 10) and fed SC-435 125 mg/kg/d for 1 week (n = 8). In rabbits treated with SC-435, fecal bile acid outputs increased by more than 8 times, reflecting substantial bile acid malabsorption.

View Article and Find Full Text PDF

Background: Mutations in either of two genes comprising the STSL locus, ATP-binding cassette (ABC)-transporters ABCG5 (encoding sterolin-1) and ABCG8 (encoding sterolin-2), result in sitosterolemia, a rare autosomal recessive disorder of sterol trafficking characterized by increased plasma plant sterol levels. Based upon the genetics of sitosterolemia, ABCG5/sterolin-1 and ABCG8/sterolin-2 are hypothesized to function as obligate heterodimers. No phenotypic difference has yet been described in humans with complete defects in either ABCG5 or ABCG8.

View Article and Find Full Text PDF

Dietary cholesterol regulation of cholesterol 7alpha-hydroxylase (Cyp7a1), the rate-limiting enzyme in the classical pathway of bile acid synthesis, has been implicated in plasma cholesterol responsiveness. In the current study, the effects of 0.0% and 0.

View Article and Find Full Text PDF

Cholesterol feeding upregulates CYP7A1 in rats but downregulates CYP7A1 in rabbits. To clarify the mechanism responsible for the upregulation of CYP7A1 in cholesterol-fed rats, the effects of dietary cholesterol (Ch) and cholic acid (CA) on the activation of the nuclear receptors, liver X-receptor (LXR-alpha) and farsenoid X-receptor (FXR), which positively and negatively regulate CYP7A1, were investigated in rats. Studies were carried out in four groups (n = 12/group) of male Sprague-Dawley rats fed regular chow (control), 2% Ch, 2% Ch + 1% CA, and 1% CA alone for 1 wk.

View Article and Find Full Text PDF

Plasma 7alpha-hydroxy-4-cholesten-3-one has been used as an index of hepatic bile acid synthesis. The aim of the current study was to ascertain whether the level of this oxysterol reflects hepatic cholesterol 7alpha-hydroxylase activity when plasma cholesterol concentrations are markedly changed. In addition, the relationship of hepatic sterol 27-hydroxylase activity with plasma concentrations of 27-hydroxycholesterol and 3beta-hydroxy-5-cholestenoic acid was studied.

View Article and Find Full Text PDF

We investigated how cholesterol feeding regulates cholesterol 7alpha-hydroxylase (CYP7A1) via the nuclear receptors farnesoid X receptor (FXR) and liver X receptor alpha (LXRalpha) in New Zealand white rabbits. After 1 day of 2% cholesterol feeding, when the bile acid pool size had not expanded, mRNA levels of the FXR target genes short-heterodimer partner (SHP) and sterol 12alpha-hydroxylase (CYP8B) were unchanged, indicating that FXR activation remained constant. In contrast, the mRNA levels of the LXRalpha target genes ATP binding cassette transporter A1 (ABCA1) and cholesteryl ester transfer protein (CETP) increased 5-fold and 2.

View Article and Find Full Text PDF

To better understand the regulation of biliary phospholipid and cholesterol excretion, canalicular membranes were isolated from the livers of C57BL/6J mice and abundant proteins separated by SDS-PAGE and identified by matrix-assisted laser desorption/ionization mass spectrometry. A prominent protein revealed by this analysis was betaine homocysteine methyltransferase (BHMT). This enzyme catalyzes the first step in a three-enzyme pathway that promotes the methylation of phosphatidylethanolamine (PE) to phosphatidylcholine (PC).

View Article and Find Full Text PDF

Cholesterol 7alpha-hydroxylase, a rate-limiting enzyme for bile acid synthesis, has been implicated in genetic susceptibility to atherosclerosis. The gene, CYP7A1, encoding a protein with this activity, is expressed normally only in hepatocytes and is highly regulated. Our cyp7A1 gene knockout mouse colony, as young adults on a chow diet, is hypercholesterolemic.

View Article and Find Full Text PDF

We investigated the roles of hydrophobic deoxycholic acid (DCA) and hydrophilic ursocholic acid (UCA) in the regulation of the orphan nuclear farnesoid X receptor (FXR) in vivo. Rabbits with bile fistula drainage (removal of the endogenous bile acid pool), rabbits with bile fistula drainage and replacement with either DCA or UCA, and intact rabbits fed 0.5% cholic acid (CA) (enlarged endogenous bile acid pool) were studied.

View Article and Find Full Text PDF

Ileal reclamation of bile salts is mediated in large part by an apical sodium-dependent bile acid transporter (ASBT) located in the terminal ileum. The following studies were performed to elucidate the adaptive response of ASBT to intestinal resection. Two separate series of intestinal resections were performed: 1) limited (25%) ileal and 2) massive (70%) intestinal resection.

View Article and Find Full Text PDF

Bile acid synthesis plays a critical role in the maintenance of mammalian cholesterol homeostasis. The CYP7A1 gene encodes the enzyme cholesterol 7alpha-hydroxylase, which catalyzes the initial step in cholesterol catabolism and bile acid synthesis. We report here a new metabolic disorder presenting with hyperlipidemia caused by a homozygous deletion mutation in CYP7A1.

View Article and Find Full Text PDF

We investigated the role of the orphan nuclear receptor farnesoid X receptor (FXR) in the regulation of cholesterol 7alpha-hydroxylase (CYP7A1), using an in vivo rabbit model, in which the bile acid pool, which includes high affinity ligands for FXR, was eliminated. After 7 days of bile drainage, the enterohepatic bile acid pool, in both New Zealand White and Watanabe heritable hyperlipidemic rabbits, was depleted. CYP7A1 activity and mRNA levels increased while FXR was deactivated as indicated by reduced FXR protein and changes in the expression of target genes that served as surrogate markers of FXR activation in the liver and ileum, respectively.

View Article and Find Full Text PDF