Low frequency oscillations in the hippocampus emerge during by both spatial navigation and episodic memory function in humans. We have recently shown that in humans, memory-related processing is a stronger driver of low frequency oscillations than navigation. These findings and others support the idea that low-frequency oscillations are more strongly associated with a general memory function than with a specific role in spatial navigation.
View Article and Find Full Text PDFDecades of work in rodents suggest that movement is a powerful driver of hippocampal low-frequency "theta" oscillations. Puzzlingly, such movement-related theta increases in primates are less sustained and of lower frequency, leading to questions about their functional relevance. Verbal memory encoding and retrieval lead to robust increases in low-frequency oscillations in humans, and one possibility is that memory might be a stronger driver of hippocampal theta oscillations in humans than navigation.
View Article and Find Full Text PDFSuccessful neuromodulation approaches to alter episodic memory require closed-loop stimulation predicated on the effective classification of brain states. The practical implementation of such strategies requires prior decisions regarding electrode implantation locations. Using a data-driven approach, we employ support vector machine (SVM) classifiers to identify high-yield brain targets on a large data set of 75 human intracranial electroencephalogram subjects performing the free recall (FR) task.
View Article and Find Full Text PDFFunctional magnetic resonance imaging (fMRI) is among the foremost methods for mapping human brain function but provides only an indirect measure of underlying neural activity. Recent findings suggest that the neurophysiological correlates of the fMRI blood oxygenation level-dependent (BOLD) signal might be regionally specific. We examined the neurophysiological correlates of the fMRI BOLD signal in the hippocampus and neocortex, where differences in neural architecture might result in a different relationship between the respective signals.
View Article and Find Full Text PDFIn humans, brain oscillations support critical features of memory formation. However, understanding the molecular mechanisms underlying this activity remains a major challenge. Here, we measured memory-sensitive oscillations using intracranial electroencephalography recordings from the temporal cortex of patients performing an episodic memory task.
View Article and Find Full Text PDFPhase amplitude coupling (PAC) between theta and gamma oscillations represents a key neurophysiological mechanism that promotes the temporal organization of oscillatory activity. For this reason, PAC has been implicated in item/context integration for episodic processes, including coordinating activity across multiple cortical regions. While data in humans has focused principally on PAC within a single brain region, data in rodents has revealed evidence that the phase of the hippocampal theta oscillation modulates gamma oscillations in the cortex (and vice versa).
View Article and Find Full Text PDFChronically implantable neurostimulation devices are becoming a clinically viable option for treating patients with neurological disease and psychiatric disorders. Neurostimulation offers the ability to probe and manipulate distributed networks of interacting brain areas in dysfunctional circuits. Here, we use tools from network control theory to examine the dynamic reconfiguration of functionally interacting neuronal ensembles during targeted neurostimulation of cortical and subcortical brain structures.
View Article and Find Full Text PDFDrug-induced aHUS is rare; however, early diagnosis is vital to reduce morbidity and mortality. With confirmation of the diagnosis, eculizumab appears to be a viable treatment option to suppress the pro-inflammatory surge. Furthermore, adverse side effects of medications such as carfilzomib and gemcitabine should be considered in the appropriate settings.
View Article and Find Full Text PDFJ Pediatr Pharmacol Ther
January 2017
Objectives: The aim of this study was to test the hypothesis that commonly administered pediatric oral medications are a significant source of toxic elements. The concentrations of 16 elements were determined in 14 frequently used pediatric oral medications.
Methods: Samples were prepared for analysis by dilution or nitric acid microwave-assisted digestion and analyzed by inductively coupled plasma mass spectrometry.