Publications by authors named "Sarah Schmidt Grant"

Successful treatment of Mycobacterium tuberculosis infection typically requires a complex regimen administered over at least 6 months. Interestingly, many of the antibiotics used to treat M. tuberculosis are prodrugs that require intracellular activation.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed a new assay for high-throughput screening of compounds that target both replicating and nonreplicating M. tuberculosis, identifying 786 potential inhibitors.
  • Testing various compounds across different nonreplicating models revealed that these compounds have differing effectiveness, indicating diverse bacterial physiology and highlighting the need for further research on the relevance of these models to actual infections.
View Article and Find Full Text PDF

Infection with the bacterial pathogen Mycobacterium tuberculosis imposes an enormous burden on global public health. New antibiotics are urgently needed to combat the global tuberculosis pandemic; however, the development of new small molecules is hindered by a lack of validated drug targets. Here, we describe the identification of a 4,6-diaryl-5,7-dimethyl coumarin series that kills M.

View Article and Find Full Text PDF

Certain bacterial pathogens are able to evade the host immune system and persist within the human host. The consequences of persistent bacterial infections potentially include increased morbidity and mortality from the infection itself as well as an increased risk of dissemination of disease. Eradication of persistent infections is difficult, often requiring prolonged or repeated courses of antibiotics.

View Article and Find Full Text PDF

During Mycobacterium tuberculosis infection, a population of bacteria likely becomes refractory to antibiotic killing in the absence of genotypic resistance, making treatment challenging. We describe an in vitro model capable of yielding a phenotypically antibiotic-tolerant subpopulation of cells, often called persisters, within populations of Mycobacterium smegmatis and M. tuberculosis.

View Article and Find Full Text PDF

Despite the urgent need for new antitubercular drugs, few are on the horizon. To combat the problem of emerging drug resistance, structurally unique chemical entities that inhibit new targets will be required. Here we describe our investigations using whole cell screening of a diverse collection of small molecules as a methodology for identifying novel inhibitors that target new pathways for Mycobacterium tuberculosis drug discovery.

View Article and Find Full Text PDF