Publications by authors named "Sarah S Zeichner"

The organic carbon content of ancient rocks provides a fundamental record of the biosphere on early Earth. For over 50 y, the high organic content of Archean (>2.5 Ga) mudrocks has puzzled geologists and evolutionary biologists, because high biological primary productivity was unexpected for the nascent biosphere before the rise of O.

View Article and Find Full Text PDF
Article Synopsis
  • Polycyclic aromatic hydrocarbons (PAHs) make up about 20% of carbon in the interstellar medium and can form under various conditions, including in hot circumstellar environments and cold interstellar clouds.
  • Isotopic analysis of PAHs from asteroid Ryugu and meteorite Murchison shows that some PAHs, like naphthalene, fluoranthene, and pyrene, have higher carbon isotopic values than expected, indicating they likely formed in the interstellar medium rather than in hot environments.
  • In contrast, the PAHs phenanthrene and anthracene from Ryugu display isotopic values that suggest they were formed through higher-temperature reactions.
View Article and Find Full Text PDF

Rationale: Position-specific C/ C ratios within amino acids remain largely unexplored in environmental samples due to methodological limitations. We hypothesized that natural-abundance isotope patterns in serine may serve as a proxy for plant metabolic fluxes including photorespiration. Here we describe an Orbitrap method optimized for the position-specific carbon isotope analysis of serine to test our hypothesis and discuss the generalizability of this method to other amino acids.

View Article and Find Full Text PDF

Many explanations for Eocene climate change focus on the Southern Ocean-where tectonics influenced oceanic gateways, ocean circulation reduced heat transport, and greenhouse gas declines prompted glaciation. To date, few studies focus on marine vertebrates at high latitudes to discern paleoecological and paleoenvironmental impacts of this climate transition. The Tertiary Eocene La Meseta (TELM) Formation has a rich fossil assemblage to characterize these impacts; , an extinct (†) sand tiger shark, is abundant throughout the La Meseta Formation.

View Article and Find Full Text PDF

An irreversible increase in alluvial mudrock occurred with the Ordovician-Silurian evolution of bryophytes, challenging a paradigm that deep-rooted plants were responsible for this landscape shift. We tested the idea that increased primary production and plant organics promoted aggregation of clay into flocs in rivers and facilitated mud deposition on floodplains. In experiments, we observed that clay readily flocculated for organic and clay concentrations common to modern rivers, yielding settling velocities three orders of magnitude larger than those without organics.

View Article and Find Full Text PDF