The shape-dependent aero- and hydro-dynamics found in nature have been adopted in a wide range of areas spanning from daily transportation to forefront biomedical research. Here, we report DNA-linked nanoparticle films exhibiting shape-dependent magnetic locomotion, controlled by DNA sequences. Fabricated through a DNA-directed layer-by-layer assembly of iron oxide and gold nanoparticles, the multifunctional films exhibit rotational and translational motions under magnetic fields, along with reversible shape morphing via DNA strand exchange reactions.
View Article and Find Full Text PDFChemical vapor deposition (CVD) is a rising tool to synthesize metal-organic framework (MOF) films. Despite growing interest and usage, its mechanism is less known. Especially, the identification of intermediates is crucial for understanding the growth mechanism and further controlling their structures.
View Article and Find Full Text PDFTwo-dimensional (2D) electrically conductive metal-organic frameworks (MOFs) have emerged as viable candidates for active electrode materials in supercapacitors due to their high electrical conductivity, high specific surface area, and intrinsic redox-active sites. Despite their promising electrochemical performance, their pseudocapacitive behavior via fast and reversible charge transfer reactions remains yet to be fully exploited. Here, we investigate the electrochemical energy storage mechanism of Cu(HHTATP) (HHTATP = 2,3,6,7,10,11-hexahydroxy-1,5,9-triaminotriphenylene), a 2D conductive MOF featuring characteristic redox-active pendant aromatic amines.
View Article and Find Full Text PDFThe atomically precise metal nanoclusters (NCs) have attracted significant attention due to their superatomic behavior originating from the quantum confinement effect. This behavior makes these materials suitable for various photoluminescence-based applications, including chemical sensing, bioimaging, and phototherapy, owing to their intriguing optical properties. Especially, the manipulation of inter- or intracluster interaction through cluster-assembled materials (CAMs) presents significant pathways for modifying the photophysical properties of NCs.
View Article and Find Full Text PDFWhile covalent organic frameworks (COFs) have been extensively investigated in the field of organic electrolyte materials, there is potential for further enhancement of their room-temperature ionic conductivity. This study introduces a novel methodology to induce self-exfoliation in the parent COF during synthesis through a postmodification technique. This process yields covalent organic nanosheets that feature pyridinium sulfobetaine groups, referred to as PS-CON.
View Article and Find Full Text PDFConspectusRecent years have witnessed significant interest in two-dimensional metal-organic frameworks (MOFs) due to their unique properties and promising applications across various fields. These materials offer distinct advantages, including high porosity and excellent charge transport properties. Their tunability allows precise control over various factors, including the electronic structure adjustments and local reactivity modulation, facilitating a wide range of properties and applications, such as material sensing and spin dynamics control.
View Article and Find Full Text PDFChemically synthesized PEDOT (poly(3,4-ethylenedioxythiophene)) nanomaterials, with various nanostructured morphologies as well as different intrinsic electrical conductivities and crystallinities, were compared as electrocatalysts for Co(III) reduction in dye-sensitized solar cells (DSSCs). Electrochemical parameters, charge transfer resistance toward the electrode/electrolyte interface, catalytic activity for Co(III)-reduction, and diffusion of cobalt redox species greatly depend on the morphology, crystallinity, and intrinsic electrical conductivity of the chemically synthesized PEDOTs and optimization of the fabrication procedure for counter electrodes. The PEDOT counter electrode, fabricated by spin coating a DMSO-dispersed PEDOT solution with an ordered 1D structure and nanosized fibers averaging 70 nm in diameter and an electrical conductivity of ∼16 S cm, exhibits the lowest charge transfer resistance, highest diffusion for a cobalt redox mediator and superior electrocatalytic performance compared to a traditional Pt-counter electrode.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are crystalline extended structures featuring permanent porosity, assembled from metal ions and organic ligands, often synthesized by the solvothermal method (50-260 °C, 12-72 h). Here, an alternative synthetic approach-solvent-induced structural rearrangement in ultrasound-assisted synthesis is presented. Six representative Zn-based MOFs, each composed of distinct secondary building units, are synthesized within 2-180 min consuming less solvent (>0.
View Article and Find Full Text PDFThe development of conductive metal-organic frameworks (MOFs) presents a unique challenge in materials chemistry because it is unclear how to dope them. Here, we demonstrate that the inclusion of pendant amines on hexahydroxytriphenylene linkages results in two-dimensional (2D) polycrystalline frameworks Cu(HHTATP), isostructural to its Cu(HHTP) parent, and exhibits the highest electrical conductivity of 1.21 S/cm among 2D MOFs featuring CuO metal nodes.
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
February 2024
Background: Lower levels of osteoprotegerin (OPG), the decoy receptor for receptor activator of NFκB (RANK)-ligand, have been reported among women with a BRCA1 mutation, suggesting OPG may be marker of cancer risk. Whether various reproductive, hormonal, or lifestyle factors impact OPG levels in these women is unknown.
Methods: BRCA1 mutation carriers enrolled in a longitudinal study, no history of cancer, and a serum sample for OPG quantification, were included.
We demonstrated the synthesis of a conductive two-dimensional metal-organic framework (MOF) thin film by single-step all-vapor-phase chemical vapor deposition (CVD). The synthesized large-area thin film of Cu(CO) has an edge-on-orientation with high crystallinity. Cu(CO) thin film-based microdevices were fabricated by e-beam lithography and had an electrical conductivity of 92.
View Article and Find Full Text PDFThe electrochemical conversion of small molecules, such as CO , O , and H O, has received significant attention as a potential engine for sustainable life. Metal-organic frameworks (MOFs) are a promising class of electrocatalytic materials for such processes. An attractive aspect of utilizing this class of materials as electrocatalysts is that well-known molecular active sites can be introduced to well-defined crystalline heterogeneous catalytic systems with high tunability.
View Article and Find Full Text PDFImprinted genes - critical for growth, metabolism, and neuronal function - are expressed from one parental allele. Parent-of-origin-dependent CpG methylation regulates this expression at imprint control regions (ICRs). Since ICRs are established before tissue specification, these methylation marks are similar across cell types.
View Article and Find Full Text PDFWomen with a pathogenic germline mutation in the BRCA1 gene face a very high lifetime risk of developing breast cancer, estimated at 72% by age 80. Prophylactic bilateral mastectomy is the only effective way to lower their risk; however, most women with a mutation opt for intensive screening with annual MRI and mammography. Given that the BRCA1 gene was identified over 20 years ago, there is a need to identify a novel non-surgical approach to hereditary breast cancer prevention.
View Article and Find Full Text PDFAlthough examples of colloidal crystal analogues to metal alloys have been reported, general routes for preparing 3D analogues to random substitutional alloys do not exist. Here, we use the programmability of DNA (length and sequence) to match nanoparticle component sizes, define parent lattice symmetry and substitutional order, and achieve faceted crystal habits. We synthesized substitutional alloy colloidal crystals with either ordered or random arrangements of two components (Au and FeO nanoparticles) within an otherwise identical parent lattice and crystal habit, confirmed via scanning electron microscopy and small-angle X-ray scattering.
View Article and Find Full Text PDFWorld J Biol Psychiatry
February 2022
Objectives: Circulating cell-free mitochondrial DNA (ccf-mtDNA) are detectable fragments of mtDNA released from the cell as a result of mitochondrial dysfunction or apoptosis. The brain is one of the most energy demanding organs in the human body, and many neuropsychiatric and non-psychiatric neurological diseases have mitochondrial dysfunction associated with disease pathophysiology. Thus, we aimed to assess ccf-mtDNA as a potential biomarker for brain diseases.
View Article and Find Full Text PDFBackground: Although maternal systemic inflammation is hypothesized to link maternal pre-pregnancy obesity to offspring metabolic dysfunction, patient empirical data are limited.
Objectives: In this study, we hypothesized that pre-pregnancy obesity alters systemic chemo/cytokines concentrations in pregnancy, and this alteration contributes to obesity in children.
Methods: In a multi-ethnic cohort of 361 mother-child pairs, we measured prenatal concentrations of plasma TNF-α, IL-6, IL-8, IL-1β, IL-4, IFN-γ, IL-12 p70 subunit, and IL-17A using a multiplex ELISA and examined associations of pre-pregnancy obesity on maternal chemo/cytokine levels, and associations of these cytokine levels with offspring body mass index z score (BMI-z) at age 2-6 years using linear regression.
In a magnetic field, cubic Fe O nanoparticles exhibit assembly behavior that is a consequence of a competition between magnetic dipole-dipole and ligand interactions. In most cases, the interactions between short hydrophobic ligands dominate and dictate assembly outcome. To better tune the face-to-face interactions, cubic Fe O nanoparticles were functionalized with DNA.
View Article and Find Full Text PDFColloidal crystal engineering with nucleic acid-modified nanoparticles is a powerful way for preparing 3D superlattices, which may be useful in many areas, including catalysis, sensing, and photonics. To date, the building blocks studied have been primarily based upon metals, metal oxides, chalcogenide semiconductors, and proteins. Here, we show that metal-organic framework nanoparticles (MOF NPs) densely functionalized with oligonucleotides can be programmed to crystallize into a diverse set of superlattices with well-defined crystal symmetries and compositions.
View Article and Find Full Text PDFThe extension of reticular chemistry concepts to electrically conductive three-dimensional metal-organic frameworks (MOFs) has been challenging, particularly for cases in which strong interactions between electroactive linkers create the charge transport pathways. Here, we report the successful replacement of tetrathiafulvalene (TTF) with a nickel glyoximate core in a family of isostructural conductive MOFs with Mn , Zn , and Cd . Different coordination environments of the framework metals lead to variations in the linker stacking geometries and optical properties.
View Article and Find Full Text PDFBackground: Mitochondrial dysfunction has been implicated in the pathophysiology of bipolar disorder (BD). Impediment of mitochondrial oxidative phosphorylation results in a shift toward anaerobic respiration and lactate production. Elevated CNS lactate levels in adults with BD inform the need to evaluate lactate in peripheral samples and early in the course of BD.
View Article and Find Full Text PDFUnder an applied magnetic field, superparamagnetic Fe O nanoparticles with complementary DNA strands assemble into crystalline, pseudo-1D elongated superlattice structures. The assembly process is driven through a combination of DNA hybridization and particle dipolar coupling, a property dependent on particle composition, size, and interparticle distance. The DNA controls interparticle distance and crystal symmetry, while the magnetic field leads to anisotropic crystal growth.
View Article and Find Full Text PDFCurrently, there is considerable interest in developing advanced rechargeable batteries that boast efficient distribution of electricity and economic feasibility for use in large-scale energy storage systems. Rechargeable aqueous zinc batteries are promising alternatives to lithium-ion batteries in terms of rate performance, cost, and safety. In this investigation, we employ Cu(HHTP), a two-dimensional (2D) conductive metal-organic framework (MOF) with large one-dimensional channels, as a zinc battery cathode.
View Article and Find Full Text PDFCadmium (Cd) is a ubiquitous environmental pollutant associated with a wide range of health outcomes including cancer. However, obscure exposure sources often hinder prevention efforts. Further, although epigenetic mechanisms are suspected to link these associations, gene sequence regions targeted by Cd are unclear.
View Article and Find Full Text PDF