Publications by authors named "Sarah S Murray"

Background: Genetic cardiomyopathies (CMs) are increasingly recognized as causes of end-stage heart failure (ESHF). Identification of a genetic etiology in ESHF has important prognostic and family implications. However, genetic testing practices are understudied in patients with ESHF.

View Article and Find Full Text PDF

While molecular testing of hematologic malignancies is now standard of care, there is variability in practice and testing capabilities between different academic laboratories, with common questions arising on how to best meet clinical expectations. A survey was sent to hematopathology subgroup members of the Genomics Organization for Academic Laboratories consortium to assess current and future practice and potentially establish a reference for peer institutions. Responses were received from 18 academic tertiary-care laboratories regarding next-generation sequencing (NGS) panel design, sequencing protocols and metrics, assay characteristics, laboratory operations, case reimbursement, and development plans.

View Article and Find Full Text PDF

Germline DDX41 variants are the most common mutations predisposing to acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS) in adults, but the causal variant (CV) landscape and clinical spectrum of hematologic malignancies (HMs) remain unexplored. Here, we analyzed the genomic profiles of 176 patients with HM carrying 82 distinct presumably germline DDX41 variants among a group of 9821 unrelated patients. Using our proposed DDX41-specific variant classification, we identified features distinguishing 116 patients with HM with CV from 60 patients with HM with variant of uncertain significance (VUS): an older age (median 69 years), male predominance (74% in CV vs 60% in VUS, P = .

View Article and Find Full Text PDF

Background: Tumor mutation burden (TMB) is a biomarker frequently reported by clinical laboratories, which is derived by quantifying of the number of single nucleotide or indel variants (mutations) identified by next-generation sequencing of tumors. TMB values can inform prognosis or predict the response of a patient's tumor to immune checkpoint inhibitor therapy. Methods for the calculation of TMB are not standardized between laboratories, with significant variables being the gene content of the panels sequenced and the inclusion or exclusion of synonymous variants in the calculations.

View Article and Find Full Text PDF

The co-occurrence of HIV and alcohol use disorder (AUD) amplifies risk for neural injury and neurocognitive deficits. However, the substantial neurocognitive heterogeneity across HIV+/AUD+ individuals suggests inter-individual differences in vulnerability to the neurotoxicity of comorbid HIV/AUD. Genetic variation in alcohol dehydrogenase (ADH), which metabolizes ethanol, may contribute to inter-individual neurocognitive variability.

View Article and Find Full Text PDF

This multi-institutional study was undertaken to evaluate interrater reliability of the 2017 Association for Molecular Pathology/American Society of Clinical Oncology/College of American Pathologists guidelines for interpretation and reporting of oncology sequence variants and to assess current practices and perceptions surrounding these guidelines. Fifty-one variants were distributed to 20 participants from 10 institutions for classification using the new guidelines. Agreement was assessed using chance-corrected agreement (Cohen κ).

View Article and Find Full Text PDF

Introduction: The Val allele of the Val158Met single-nucleotide polymorphism of the catechol-o-methyltransferase gene (COMT) confers greater catabolism of dopamine (DA) in the prefrontal cortex (PFC) than the Met allele. Met/Met homozygotes typically outperform Val-carriers on tests of executive function (EF), perhaps resulting from increased DA bioavailability. Methamphetamine (METH) causes large releases of DA, which is associated with neurotoxicity and executive dysfunction in chronic METH users.

View Article and Find Full Text PDF

The use of next-generation sequencing technologies has enabled the analysis of a wide spectrum of somatic mutations in tumors. This analysis can be carried out using various strategies including the use of small panels of focused, clinically actionable genes, large panels of cancer-related genes, whole exomes, and the entire genome. One of the main goals in these analyses is to identify key mutations in these tumors that drive the oncogenic process.

View Article and Find Full Text PDF

The use of next-generation sequencing and hybridization-based capture for target enrichment have enabled the interrogation of coding regions of several clinically significant cancer genes in tumor specimens using both targeted panels of a few to hundreds of genes, to whole-exome panels encompassing coding regions of all genes in the genome. Next-generation sequencing (NGS) technologies produce millions of relatively short segments of sequences or reads that require bioinformatics tools to map reads back to a reference genome using various read alignment tools, as well as to determine differences between single bases (single nucleotide variants or SNVs) or multiple bases (insertions and deletions or indels) between the aligned reads and the reference genome to call variants. In addition to single nucleotide changes or small insertions and deletions, high copy gains and losses can also be gleaned from NGS data to call gene amplifications and deletions.

View Article and Find Full Text PDF

The use of next generation sequencing (NGS) to profile tumor genomes for the presence of diagnostic, prognostic, or therapeutically targetable variants is revolutionizing the practice of oncology and is increasingly utilized in clinical laboratory settings. Beginning with the isolation of DNA of sufficient quality and quantity from a tumor specimen, the creation of a library of genomic fragments representing the portion of the genome of interest, ranging from a few genes to the entire exome, is the first step required in the sequencing process. Fixed tumor tissue in the form of a tissue block is the most commonly encountered specimen for analysis in a clinical setting.

View Article and Find Full Text PDF

Genome-wide association studies of case-control status have advanced the understanding of the genetic basis of psychiatric disorders. Further progress may be gained by increasing sample size but also by new analysis strategies that advance the exploitation of existing data, especially for clinically important quantitative phenotypes. The functionally-informed efficient region-based test strategy (FIERS) introduced herein uses prior knowledge on biological function and dependence of genotypes within a powerful statistical framework with improved sensitivity and specificity for detecting consistent genetic effects across studies.

View Article and Find Full Text PDF
Article Synopsis
  • C-reactive protein (CRP) is a key biomarker reflecting chronic low-grade inflammation linked to various diseases, and its genetic origins are not fully understood.
  • Two genome-wide association studies (GWASs) involving 204,402 European participants revealed 58 genetic loci related to CRP levels, with these loci explaining about 7% of CRP variation.
  • Analysis showed that CRP has a protective effect against schizophrenia but may increase the risk of developing bipolar disorder, offering new insights into inflammation's role in these conditions.
View Article and Find Full Text PDF

LDL receptor-related proteins (LRPs) are transmembrane receptors involved in endocytosis, cell-signaling, and trafficking of other cellular proteins. Considerable work has focused on LRPs in the fields of vascular biology and neurobiology. How these receptors affect cancer progression in humans remains largely unknown.

View Article and Find Full Text PDF

The electrocardiographic QRS duration, a measure of ventricular depolarization and conduction, is associated with cardiovascular mortality. While single nucleotide polymorphisms (SNPs) associated with QRS duration have been identified at 22 loci in populations of European descent, the genetic architecture of QRS duration in non-European populations is largely unknown. We therefore performed a genome-wide association study (GWAS) meta-analysis of QRS duration in 13,031 African Americans from ten cohorts and a transethnic GWAS meta-analysis with additional results from populations of European descent.

View Article and Find Full Text PDF

Objective: The aims of the current study were to determine whether children with the 6 different APOE ε genotypes show differences in gray matter maturation, particularly for those with ε4 and ε2 alleles, which are associated with poorer outcomes in many neurologic disorders.

Methods: A total of 1,187 healthy children (aged 3-20 years, 52.1% boys, 47.

View Article and Find Full Text PDF

Genetic mechanisms underlying abnormal early neural development in toddlers with Autism Spectrum Disorder (ASD) remain uncertain due to the impossibility of direct brain gene expression measurement during critical periods of early development. Recent findings from a multi-tissue study demonstrated high expression of many of the same gene networks between blood and brain tissues, in particular with cell cycle functions. We explored relationships between blood gene expression and total brain volume (TBV) in 142 ASD and control male toddlers.

View Article and Find Full Text PDF

Anxiety is a risk factor for many adverse neuropsychiatric and socioeconomic outcomes, and has been linked to functional and structural changes in the ventromedial prefrontal cortex (VMPFC). However, the nature of these differences, as well as how they develop in children and adolescents, remains poorly understood. More effective interventions to minimize the negative consequences of anxiety require better understanding of its neurobiology in children.

View Article and Find Full Text PDF

Dyslexia and language impairment (LI) are complex traits with substantial genetic components. We recently completed an association scan of the DYX2 locus, where we observed associations of markers in DCDC2, KIAA0319, ACOT13, and FAM65B with reading-, language-, and IQ-related traits. Additionally, the effects of reading-associated DYX3 markers were recently characterized using structural neuroimaging techniques.

View Article and Find Full Text PDF

The main objective of the multi-site Pediatric Imaging, Neurocognition, and Genetics (PING) study was to create a large repository of standardized measurements of behavioral and imaging phenotypes accompanied by whole genome genotyping acquired from typically-developing children varying widely in age (3 to 20 years). This cross-sectional study produced sharable data from 1493 children, and these data have been described in several publications focusing on brain and cognitive development. Researchers may gain access to these data by applying for an account on the PING portal and filing a data use agreement.

View Article and Find Full Text PDF

Socioeconomic disparities are associated with differences in cognitive development. The extent to which this translates to disparities in brain structure is unclear. We investigated relationships between socioeconomic factors and brain morphometry, independently of genetic ancestry, among a cohort of 1,099 typically developing individuals between 3 and 20 years of age.

View Article and Find Full Text PDF

Importance: The identification of genomic signatures that aid early identification of individuals at risk for autism spectrum disorder (ASD) in the toddler period remains a major challenge because of the genetic and phenotypic heterogeneity of the disorder. Generally, ASD is not diagnosed before the fourth to fifth birthday.

Objective: To apply a functional genomic approach to identify a biologically relevant signature with promising performance in the diagnostic classification of infants and toddlers with ASD.

View Article and Find Full Text PDF

Objective: The diagnostic boundaries of sleep disorders are under considerable debate. The main sleep disorders are partly heritable; therefore, defining heritable pathophysiologic mechanisms could delineate diagnoses and suggest treatment. We collected clinical data and DNA from consenting patients scheduled to undergo clinical polysomnograms, to expand our understanding of the polymorphisms associated with the phenotypes of particular sleep disorders.

View Article and Find Full Text PDF