Publications by authors named "Sarah Rugheimer"

Exoplanet science is one of the most thriving fields of modern astrophysics. A major goal is the atmospheric characterization of dozens of small, terrestrial exoplanets in order to search for signatures in their atmospheres that indicate biological activity, assess their ability to provide conditions for life as we know it, and investigate their expected atmospheric diversity. None of the currently adopted projects or missions, from ground or in space, can address these goals.

View Article and Find Full Text PDF

The COVID-19 pandemic has devastated individuals, families, and institutions throughout the world. Despite the breakneck speed of vaccine development, the human population remains at risk of further devastation. The decision to not become vaccinated, the protracted rollout of available vaccine, vaccine failure, mutational forms of the SARS virus, which may exhibit mounting resistance to our molecular strike at only one form of the viral family, and the rapid ability of the virus(es) to hitch a ride on our global transportation systems, means that we are will likely continue to confront an invisible, yet devastating foe.

View Article and Find Full Text PDF

In the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseous products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earth's biosphere, both in the present and through geologic time, for analog signatures that will aid in the search for life elsewhere.

View Article and Find Full Text PDF

We aim to see if the difference between equilibrium and disequilibrium chemistry is observable in the atmospheres of transiting planets by the James Webb Space Telescope (JWST). We perform a case study comparing the dayside emission spectra of three planets like HD 189733b, WASP-80b, and GJ436b, in and out of chemical equilibrium at two metallicities each. These three planets were chosen because they span a large range of planetary masses and equilibrium temperatures, from hot and Jupiter-sized to warm and Neptune-sized.

View Article and Find Full Text PDF

We present model atmospheres for an Earth-like planet orbiting the entire grid of main sequence FGK stars with effective temperatures ranging from Teff=4250 K to Teff=7000 K in 250 K intervals. We have modeled the remotely detectable spectra of Earth-like planets for clear and cloudy atmospheres at the 1 AU equivalent distance from the VIS to IR (0.4 to 20 μm) to compare detectability of features in different wavelength ranges in accordance with the James Webb Space Telescope and future design concepts to characterize exo-Earths.

View Article and Find Full Text PDF